# High Availability Extensions

**Goldwyn Rodrigues** 

High Availability Storage Engineer SUSE



#### **High Availability Extensions**

- Highly available services for mission critical systems
- Integrated suite over robust open-source technologies
- Business Continuity
- Protect Data Integrity
- Reduce Unplanned Downtime
- Commodity Hardware for high availability



#### Cluster

- $\cdot$  A set of computers interacting with each other
- $\cdot$  One goes down, another picks up its responsibility
- $\cdot$  Should be available as much as possible
- Cluster Types:
  - Active/Active vs Active/Passive (N+1, N+M)
  - Physical vs Virtual vs Hybrid
  - Local Clusters vs Metro vs Geo Clusters



# Why Cluster

- Increased Availability
- Improved Performance
- $\cdot$  Low cost of operation
- Scalability
- Disaster Recovery
- Data Protection
- Server Consolidation
- Storage Consolidation



#### **CAP** Theorem

Brewers Theorem



part of the system



#### **Fault Tolerance vs High Availability**

- Specialized hardware to detect a hardware fault and switch to redundant hardware
- Expensive redundant and replicated components
- A set of computers system-wide, shared resources that cooperate to guarantee essential services
- Software and hardware to quickly restore services



#### Cluster





#### **A Dysfunctional Cluster**





#### **STONITH** Shoot the Other Node In the Head





#### Quorum





#### **Quorum Policies**

- Ignore
  - Continue cluster operations as usual
- Freeze
  - Resource management continues
  - New resources are not started
- Stop
  - All resources affected partition are stopped
- Suicide
  - Fence all nodes in affected partition



#### **Resource Agents**

- Open Cluster Framework (OCF)
- Manage resources
  - Web Server
  - IP Address
  - Shared Filesystem
- Resource Operations
  - Id
  - Name
  - Interval
  - timeout



# **Configuration Tools**

- Cluster Resource Manager (CRM)
  - Powerful Command line tool
- YasT
  - Basic Cluster setup
  - DRBD
  - IP Load balancing
- High Availability Web Konsole (Hawk)
  - Web based



#### Architecture



#### **Resource Agent Constraints**





#### **Shared Storage**





#### **Shared Storage**

- $\cdot$  A common view for all nodes
- Node Failure: One node can pick up from where the other left
- Local filesystems don't work
  - Data corruptions because of writing files other nodes access
  - Node Cache Inconsistencies



#### DLM

**Distributed Lock Manager** 

- Provides a Cluster-wide locking for data access
- $\cdot$  Different Level for wide variety of uses
- No centralized-control
  - Easy for take over
  - The node accessing the object first gets to create the distributed lock object
- Lock Value Block (LVB) for data synchronization



#### **DLM** Distributed Lock Manager

| Mode | NL  | CR  | CW  | PR  | PW  | EX  |
|------|-----|-----|-----|-----|-----|-----|
| NL   | Yes | Yes | Yes | Yes | Yes | Yes |
| CR   | Yes | Yes | Yes | Yes | Yes | No  |
| CW   | Yes | Yes | Yes | No  | No  | No  |
| PR   | Yes | Yes | No  | Yes | No  | No  |
| PW   | Yes | Yes | No  | No  | No  | No  |
| EX   | Yes | No  | No  | No  | No  | No  |

# cLVM

**Clustered Logical Volume Manager** 

- Logical Volume Manager for the cluster
- Add or remove devices as storage needs change
- Linear
  - Add storage as required
  - Simple addition of devices in a linear form
- Mirrored
  - Redundancy of devices over the cluster



#### **DRBD** Distributed Replicated Block Device



#### DRBD

**Distributed Replicated Block Device** 

- Shared Storage without a SAN
  - Governed by network speeds
- RAID1 over network block device and local device
- Fully synchronous, memory synchronous or asynchronous modes of operation
- Dual Primary for clustered filesytems



## **Shared Filesystem**

ocfs2

- $\cdot$  Simultaneously mounted on all nodes
  - All nodes should have access to the data
- Cluster Filesystem with a good throughput
  - Should not be bogged down with multiple access
  - Force cache flush on other nodes using filesystem when current node access the file



#### **OCFS2** Features

- B-tree Extent based
- Inline data
- Indexed Directories
- Metadata ECC
- Refcount
- Extended Attributes
  - ACL
- Quota

Read man mkfs.ocfs2 for more information..



#### **Usage Scenarios**

- Database Server Applications
  - Common database repository
  - CTDB (Samba)
- Web Servers
  - WWW root
- Highly Available Virtual Machines
  - VM Disks



#### **Generic Clustering Tips**

- $\cdot$  Always use STONITH
  - Recommend multiple STONITH devices
  - SBD is an alternative
- $\cdot$  Time synchronization
- $\cdot$  Read the logs when things are not working
  - Record Time of event
- Redundant Communications
  - Network Device bonding
  - Redundant Ring Protocol



### OCFS2 Tips

- Prefer hardware based RAID (mirroring)
- $\cdot$  If you don't want a feature don't enable it
  - Quota, ACL, Inline directories use additional data on disk and additional lookups
  - You can always enable it later using tunefs.ocfs2
- Inline directories for large number of files
- MetaECC for better data protection
  - Protects filesystem from getting corrupted further
  - Immediately run fsck.ocfs2



#### SUSE. Linux Enterprise High Availability Extension https://www.suse.com/products/ highavailability/

Thank you.





#### **Unpublished Work of SUSE LLC. All Rights Reserved.**

This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

#### **General Disclaimer**

This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners.

