
The�DRBD�User’s�Guide

Florian�Haas
Philipp�Reisner
Lars�Ellenberg

The�DRBD�User’s�Guide
by Florian Haas, Philipp Reisner, and Lars Ellenberg

This guide has been released to the DRBD community, and its authors strive to improve it permanently.
Feedback from readers is always welcome and encouraged. Please use the DRBD public mailing list [109]
for enhancement suggestions and corrections.
Copyright © 2008, 2009 LINBIT Information Technologies GmbH
Copyright © 2009, 2010, 2011 LINBIT HA Solutions GmbH

License information

The text of and illustrations in this document are licensed under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-
BY-SA", brief explanation [http://creativecommons.org/licenses/by-sa/3.0/], full license text [http://creativecommons.org/licenses/
by-sa/3.0/legalcode]).

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Trademarks used in this guide

DRBD®, the DRBD logo, LINBIT®, and the LINBIT logo are trademarks or registered trademarks of LINBIT Information Technologies GmbH
in Austria, the United States and other countries.

AMD is a registered trademark of Advanced Micro Devices, Inc.

Citrix is a registered trademark of Citrix, Inc.

Debian is a registered trademark of Software in the Public Interest, Inc.

Dolphin Interconnect Solutions and SuperSockets are trademarks or registered trademarks of Dolphin Interconnect Solutions ASA.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Oracle, MySQL, and MySQL Enterprise are trademarks or registered trademarks of Oracle Corporation and/or its affiliates.

Red Hat, Red Hat Enterprise Linux, and RPM are trademarks or registered trademarks of Red Hat, Inc.

SuSE, SUSE, and SUSE Linux Enterprise Server are trademarks or registered trademarks of Novell, Inc.

Xen is a registered trademark of Citrix, Inc.

Other names mentioned in this guide may be trademarks or registered trademarks of their respective owners.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

iii

Table�of�Contents
Please Read This First ... viii
I. Introduction to DRBD .. 1

1. DRBD Fundamentals ... 2
1.1. Kernel module ... 2
1.2. User space administration tools ... 2
1.3. Resources ... 3
1.4. Resource roles .. 3

2. DRBD Features .. 5
2.1. Single-primary mode ... 5
2.2. Dual-primary mode ... 5
2.3. Replication modes ... 5
2.4. Multiple replication transports .. 6
2.5. Efficient synchronization .. 6

2.5.1. Variable-rate synchronization ... 7
2.5.2. Fixed-rate synchronization .. 7
2.5.3. Checksum-based synchronization ... 7

2.6. Suspended replication .. 7
2.7. On-line device verification ... 7
2.8. Replication traffic integrity checking .. 8
2.9. Split brain notification and automatic recovery .. 8
2.10. Support for disk flushes ... 9
2.11. Disk error handling strategies ... 10
2.12. Strategies for dealing with outdated data ... 10
2.13. Three-way replication .. 11
2.14. Long-distance replication with DRBD Proxy .. 11
2.15. Truck based replication .. 12
2.16. Floating peers ... 12

II. Building, installing and configuring DRBD ... 14
3. Installing pre-built DRBD binary packages ... 15

3.1. Packages supplied by LINBIT ... 15
3.2. Packages supplied by distribution vendors .. 15

3.2.1. SUSE Linux Enterprise Server ... 15
3.2.2. Debian GNU/Linux .. 15
3.2.3. CentOS ... 16
3.2.4. Ubuntu Linux ... 16

4. Building and installing DRBD from source .. 17
4.1. Downloading the DRBD sources .. 17
4.2. Checking out sources from the public DRBD source repository 17
4.3. Building DRBD from source .. 18

4.3.1. Checking build prerequisites ... 18
4.3.2. Preparing the kernel source tree ... 18
4.3.3. Preparing the DRBD build tree .. 19
4.3.4. Building DRBD userspace utilities .. 21
4.3.5. Compiling DRBD as a kernel module .. 21

4.4. Building a DRBD RPM package .. 22
4.5. Building a DRBD Debian package ... 23

5. Configuring DRBD .. 25
5.1. Preparing your lower-level storage .. 25
5.2. Preparing your network configuration .. 25
5.3. Configuring your resource .. 26

5.3.1. Example configuration ... 26
5.3.2. The global section ... 28
5.3.3. The common section ... 28
5.3.4. The resource sections ... 28

5.4. Enabling your resource for the first time .. 28

The DRBD User’s Guide

iv

5.5. The initial device synchronization .. 29
5.6. Using truck based replication .. 30

III. Working with DRBD ... 31
6. Common administrative tasks .. 32

6.1. Checking DRBD status ... 32
6.1.1. Retrieving status with drbd-overview 32
6.1.2. Status information in /proc/drbd .. 32
6.1.3. Connection states ... 33
6.1.4. Resource roles .. 34
6.1.5. Disk states ... 34
6.1.6. I/O state flags ... 35
6.1.7. Performance indicators ... 35

6.2. Enabling and disabling resources .. 36
6.2.1. Enabling resources .. 36
6.2.2. Disabling resources ... 36

6.3. Reconfiguring resources ... 36
6.4. Promoting and demoting resources .. 37
6.5. Enabling dual-primary mode ... 37

6.5.1. Permanent dual-primary mode ... 37
6.5.2. Temporary dual-primary mode ... 38
6.5.3. Automating promotion on system startup 38

6.6. Using on-line device verification ... 38
6.6.1. Enabling on-line verification ... 38
6.6.2. Invoking on-line verification .. 38
6.6.3. Automating on-line verification .. 39

6.7. Configuring the rate of synchronization ... 39
6.7.1. Permanent fixed sync rate configuration 39
6.7.2. Temporary fixed sync rate configuration 40
6.7.3. Variable sync rate configuration ... 40

6.8. Configuring checksum-based synchronization ... 41
6.9. Configuring congestion policies and suspended replication 41
6.10. Configuring I/O error handling strategies .. 42
6.11. Configuring replication traffic integrity checking 43
6.12. Resizing resources ... 43

6.12.1. Growing on-line ... 43
6.12.2. Growing off-line .. 43
6.12.3. Shrinking on-line .. 44
6.12.4. Shrinking off-line ... 45

6.13. Disabling backing device flushes .. 46
6.14. Configuring split brain behavior ... 46

6.14.1. Split brain notification ... 46
6.14.2. Automatic split brain recovery policies 47

6.15. Creating a three-node setup ... 48
6.15.1. Device stacking considerations ... 48
6.15.2. Configuring a stacked resource ... 48
6.15.3. Enabling stacked resources .. 49

6.16. Using DRBD Proxy ... 50
6.16.1. DRBD Proxy deployment considerations 50
6.16.2. Installation ... 50
6.16.3. License file .. 50
6.16.4. Configuration ... 51
6.16.5. Controlling DRBD Proxy .. 51
6.16.6. Troubleshooting .. 52

7. Troubleshooting and error recovery .. 53
7.1. Dealing with hard drive failure .. 53

7.1.1. Manually detaching DRBD from your hard drive 53
7.1.2. Automatic detach on I/O error ... 53
7.1.3. Replacing a failed disk when using internal meta data 53

The DRBD User’s Guide

v

7.1.4. Replacing a failed disk when using external meta data 54
7.2. Dealing with node failure ... 54

7.2.1. Dealing with temporary secondary node failure 54
7.2.2. Dealing with temporary primary node failure 55
7.2.3. Dealing with permanent node failure ... 55

7.3. Manual split brain recovery .. 55
IV. DRBD-enabled applications .. 57

8. Integrating DRBD with Pacemaker clusters .. 58
8.1. Pacemaker primer ... 58
8.2. Adding a DRBD-backed service to the cluster configuration 58
8.3. Using resource-level fencing in Pacemaker clusters 59

8.3.1. Resource-level fencing with dopd .. 60
8.3.2. Resource-level fencing using the Cluster Information Base (CIB) 61

8.4. Using stacked DRBD resources in Pacemaker clusters 61
8.4.1. Adding off-site disaster recovery to Pacemaker clusters 61
8.4.2. Using stacked resources to achieve 4-way redundancy in
Pacemaker clusters .. 63

8.5. Configuring DRBD to replicate between two SAN-backed Pacemaker
clusters ... 66

8.5.1. DRBD resource configuration ... 66
8.5.2. Pacemaker resource configuration .. 67
8.5.3. Site fail-over ... 68

9. Integrating DRBD with Red Hat Cluster ... 69
9.1. Red Hat Cluster background information .. 69

9.1.1. Fencing ... 69
9.1.2. The Resource Group Manager .. 69

9.2. Red Hat Cluster configuration ... 70
9.2.1. The cluster.conf file ... 70

9.3. Using DRBD in Red Hat Cluster fail-over clusters 70
9.3.1. Setting up your cluster configuration .. 71

10. Using LVM with DRBD .. 72
10.1. LVM primer .. 72
10.2. Using a Logical Volume as a DRBD backing device 73
10.3. Using automated LVM snapshots during DRBD synchronization 74
10.4. Configuring a DRBD resource as a Physical Volume 74
10.5. Adding a new DRBD volume to an existing Volume Group 76
10.6. Nested LVM configuration with DRBD .. 77
10.7. Highly available LVM with Pacemaker ... 78

11. Using GFS with DRBD ... 80
11.1. GFS primer ... 80
11.2. Creating a DRBD resource suitable for GFS ... 80
11.3. Configuring LVM to recognize the DRBD resource 81
11.4. Configuring your cluster to support GFS .. 81
11.5. Creating a GFS filesystem .. 81
11.6. Using your GFS filesystem .. 82

12. Using OCFS2 with DRBD ... 83
12.1. OCFS2 primer ... 83
12.2. Creating a DRBD resource suitable for OCFS2 83
12.3. Creating an OCFS2 filesystem ... 84
12.4. Pacemaker OCFS2 management .. 84

12.4.1. Adding a Dual-Primary DRBD resource to Pacemaker 84
12.4.2. Adding OCFS2 management capability to Pacemaker 85
12.4.3. Adding an OCFS2 filesystem to Pacemaker 85
12.4.4. Adding required Pacemaker constraints to manage OCFS2
filesystems .. 85

12.5. Legacy OCFS2 management (without Pacemaker) 85
12.5.1. Configuring your cluster to support OCFS2 86
12.5.2. Using your OCFS2 filesystem ... 87

The DRBD User’s Guide

vi

13. Using Xen with DRBD ... 88
13.1. Xen primer ... 88
13.2. Setting DRBD module parameters for use with Xen 88
13.3. Creating a DRBD resource suitable to act as a Xen VBD 88
13.4. Using DRBD VBDs ... 89
13.5. Starting, stopping, and migrating DRBD-backed domU’s 89
13.6. Internals of DRBD/Xen integration ... 90
13.7. Integrating Xen with Pacemaker .. 90

V. Optimizing DRBD performance .. 91
14. Measuring block device performance .. 92

14.1. Measuring throughput ... 92
14.2. Measuring latency ... 92

15. Optimizing DRBD throughput .. 94
15.1. Hardware considerations .. 94
15.2. Throughput overhead expectations .. 94
15.3. Tuning recommendations .. 95

15.3.1. Setting max-buffers and max-epoch-size 95
15.3.2. Tweaking the I/O unplug watermark ... 95
15.3.3. Tuning the TCP send buffer size ... 95
15.3.4. Tuning the Activity Log size ... 96
15.3.5. Disabling barriers and disk flushes ... 96

16. Optimizing DRBD latency .. 97
16.1. Hardware considerations .. 97
16.2. Latency overhead expectations ... 97
16.3. Tuning recommendations .. 97

16.3.1. Setting DRBD’s CPU mask .. 97
16.3.2. Modifying the network MTU .. 98
16.3.3. Enabling the deadline I/O scheduler 98

VI. Learning more about DRBD .. 100
17. DRBD Internals .. 101

17.1. DRBD meta data ... 101
17.1.1. Internal meta data .. 101
17.1.2. External meta data ... 102
17.1.3. Estimating meta data size .. 102

17.2. Generation Identifiers .. 103
17.2.1. Data generations .. 103
17.2.2. The generation identifier tuple ... 103
17.2.3. How generation identifiers change .. 103
17.2.4. How DRBD uses generation identifiers 105

17.3. The Activity Log ... 106
17.3.1. Purpose ... 106
17.3.2. Active extents ... 106
17.3.3. Selecting a suitable Activity Log size 106

17.4. The quick-sync bitmap .. 107
17.5. The peer fencing interface ... 107

18. Getting more information ... 109
18.1. Commercial DRBD support ... 109
18.2. Public mailing list .. 109
18.3. Public IRC Channels ... 109
18.4. Blogs ... 109
18.5. Official Twitter account ... 109
18.6. Publications .. 109
18.7. Other useful resources ... 110

VII. Appendices .. 111
A. Recent changes ... 112

A.1. Volumes ... 112
A.1.1. Changes to udev symlinks ... 112

A.2. Changes to the configuration syntax ... 112

The DRBD User’s Guide

vii

A.2.1. Boolean configuration options .. 113
A.2.2. syncer section no longer exists .. 113
A.2.3. protocol option is no longer special 114
A.2.4. New per-resource options section ... 114

A.3. On-line changes to network communications .. 115
A.3.1. Changing the replication protocol ... 115
A.3.2. Changing from single-Primary to dual-Primary replication 115

A.4. Changes to the drbdadm command .. 115
A.4.1. Changes to pass-through options ... 115
A.4.2. --force option replaces --overwrite-data-of-peer 116

A.5. Changed default values .. 116
A.5.1. Number of concurrently active Activity Log extents (al-
extents) .. 116
A.5.2. Run-length encoding (use-rle) ... 116
A.5.3. I/O error handling strategy (on-io-error) 116
A.5.4. Variable-rate synchronization ... 117
A.5.5. Number of configurable DRBD devices (minor-count) 117

B. DRBD system manual pages .. 118
drbd.conf .. 119
drbdadm ... 136
drbdsetup ... 140
drbdmeta .. 157

Index .. 159

viii

Please�Read�This�First
This guide is intended to serve users of the Distributed Replicated Block Device (DRBD) as a
definitive reference guide and handbook.

It is being made available to the DRBD community by LINBIT [http://www.linbit.com/], the
project’s sponsor company, free of charge and in the hope that it will be useful. The guide is
constantly being updated. We try to add information about new DRBD features simultaneously
with the corresponding DRBD releases. An on-line HTML version of this guide is always available
at http://www.drbd.org/users-guide/.

Important

This guide assumes, throughout, that you are using DRBD version 8.4.0 or later. If
you are using a legacy (pre-8.4) DRBD version instead, please use the version of this
guide which has been preserved at http://www.drbd.org/users-guide-legacy/.

Some sections in this guide are marked as Draft. They have been added recently, and should not
be considered authoritative. Feedback and comments on these sections are particularly welcome
and highly encouraged.

Please use the drbd-user mailing list [109] to submit comments.

This guide is organized in seven parts:

• Part I, “Introduction to DRBD” [1] deals with DRBD’s basic functionality. It gives a short
overview of DRBD’s positioning within the Linux I/O stack, and about fundamental DRBD
concepts. It also examines DRBD’s most important features in detail.

• Part II, “Building, installing and configuring DRBD” [14] talks about building DRBD from
source, installing pre-built DRBD packages, and contains an overview of getting DRBD running
on a cluster system.

• Part III, “Working with DRBD” [31] is about managing DRBD, configuring and reconfiguring
DRBD resources, and common troubleshooting scenarios.

• Part IV, “DRBD-enabled applications” [57] deals with leveraging DRBD to add storage
replication and high availability to applications. It not only covers DRBD integration in the
Pacemaker cluster manager, but also advanced LVM configurations, integration of DRBD with
GFS, and adding high availability to Xen virtualization environments.

• Part V, “Optimizing DRBD performance” [91] contains pointers for getting the best
performance out of DRBD configurations.

• Part VI, “Learning more about DRBD” [100] dives into DRBD’s internals, and also contains
pointers to other resources which readers of this guide may find useful.

• Part VII, “Appendices” [111] contains two appendices. Appendix A, Recent changes [112]
is an overview of changes in DRBD 8.4, compared to earlier DRBD versions. Appendix B, DRBD
system manual pages [118] contains online versions of the Linux manual pages distributed
with the latest DRBD version, for reference purposes.

Users interested in DRBD training or support services are invited to contact us at sales@linbit.com
[mailto:sales@linbit.com].

http://www.linbit.com/
http://www.linbit.com/
http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide-legacy/
mailto:sales@linbit.com
mailto:sales@linbit.com

Part I. Introduction�to�DRBD

2

Chapter 1. DRBD�Fundamentals
The Distributed Replicated Block Device (DRBD) is a software-based, shared-nothing, replicated
storage solution mirroring the content of block devices (hard disks, partitions, logical volumes
etc.) between hosts.

DRBD mirrors data

• in real time. Replication occurs continuously while applications modify the data on the device.

• transparently. Applications need not be aware that the data is stored on multiple hosts.

• synchronously or asynchronously. With synchronous mirroring, applications are notified of
write completions after the writes have been carried out on all hosts. With asynchronous
mirroring, applications are notified of write completions when the writes have completed
locally, which usually is before they have propagated to the other hosts.

1.1. Kernel�module
DRBD’s core functionality is implemented by way of a Linux kernel module. Specifically, DRBD
constitutes a driver for a virtual block device, so DRBD is situated right near the bottom of a
system’s I/O stack. Because of this, DRBD is extremely flexible and versatile, which makes it a
replication solution suitable for adding high availability to just about any application.

DRBD is, by definition and as mandated by the Linux kernel architecture, agnostic of the layers
above it. Thus, it is impossible for DRBD to miraculously add features to upper layers that these do
not possess. For example, DRBD cannot auto-detect file system corruption or add active-active
clustering capability to file systems like ext3 or XFS.

Figure 1.1. DRBD’s position within the Linux I/O stack

FILE SYSTEM

PAGE CACHE

I/O SCHEDULER

DISK DRIVER

RAW DEVICE

NETWORK STACK

NIC DRIVER

SERVICE

RAW DEVICE

NETWORK STACK

NIC DRIVER DISK DRIVER

I/O SCHEDULER

FILE SYSTEM

PAGE CACHE

SERVICE

1.2. User�space�administration�tools
DRBD comes with a set of administration tools which communicate with the kernel module in
order to configure and administer DRBD resources.

DRBD Fundamentals

3

drbdadm. The high-level administration tool of the DRBD program suite. Obtains all DRBD
configuration parameters from the configuration file /etc/drbd.conf and acts as a front-end
for drbdsetup and drbdmeta. drbdadm has a dry-run mode, invoked with the -d option, that
shows which drbdsetup and drbdmeta calls drbdadm would issue without actually calling
those commands.

drbdsetup. Configures the DRBD module loaded into the kernel. All parameters to
drbdsetup must be passed on the command line. The separation between drbdadm and
drbdsetup allows for maximum flexibility. Most users will rarely need to use drbdsetup
directly, if at all.

drbdmeta. Allows to create, dump, restore, and modify DRBD meta data structures. Like
drbdsetup, most users will only rarely need to use drbdmeta directly.

1.3. Resources
In DRBD, resource is the collective term that refers to all aspects of a particular replicated data
set. These include:

Resource name. This can be any arbitrary, US-ASCII name not containing whitespace by which
the resource is referred to.

Volumes. Any resource is a replication group consisting of one of more volumes that share
a common replication stream. DRBD ensures write fidelity across all volumes in the resource.
Volumes are numbered starting with 0, and there may be up to 65,535 volumes in one resource.
A volume contains the replicated data set, and a set of metadata for DRBD internal use.

At the drbdadm level, a volume within a resource can be addressed by the resource name and
volume number as <resource>/<volume>.

DRBD device. This is a virtual block device managed by DRBD. It has a device major number of
147, and its minor numbers are numbered from 0 onwards, as is customary. Each DRBD device
corresponds to a volume in a resource. The associated block device is usually named /dev/
drbdX, where X is the device minor number. DRBD also allows for user-defined block device
names which must, however, start with drbd_.

Note

Very early DRBD versions hijacked NBD’s device major number 43. This is long
obsolete; 147 is the LANANA-registered [http://www.lanana.org/docs/device-list/
] DRBD device major.

Connection. A connection is a communication link between two hosts that share a replicated
data set. As of the time of this writing, each resource involves only two hosts and exactly one
connection between these hosts, so for the most part, the terms resource and connection
can be used interchangeably.

At the drbdadm level, a connection is addressed by the resource name.

1.4. Resource�roles
In DRBD, every resource [3] has a role, which may be Primary or Secondary.

Note

The choice of terms here is not arbitrary. These roles were deliberately not named
"Active" and "Passive" by DRBD’s creators. Primary vs. secondary refers to a concept
related to availability of storage, whereas active vs. passive refers to the availability

http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/

DRBD Fundamentals

4

of an application. It is usually the case in a high-availability environment that the
primary node is also the active one, but this is by no means necessary.

• A DRBD device in the primary role can be used unrestrictedly for read and write operations. It
may be used for creating and mounting file systems, raw or direct I/O to the block device, etc.

• A DRBD device in the secondary role receives all updates from the peer node’s device, but
otherwise disallows access completely. It can not be used by applications, neither for read nor
write access. The reason for disallowing even read-only access to the device is the necessity
to maintain cache coherency, which would be impossible if a secondary resource were made
accessible in any way.

The resource’s role can, of course, be changed, either by manual intervention [37] or by way
of some automated algorithm by a cluster management application. Changing the resource role
from secondary to primary is referred to as promotion, whereas the reverse operation is termed
demotion.

5

Chapter 2. DRBD�Features
This chapter discusses various useful DRBD features, and gives some background information
about them. Some of these features will be important to most users, some will only be relevant
in very specific deployment scenarios. Chapter 6, Common administrative tasks [32] and
Chapter 7, Troubleshooting and error recovery [53] contain instructions on how to enable and
use these features in day-to-day operation.

2.1. Single-primary�mode
In single-primary mode, a resource [3] is, at any given time, in the primary role on only one cluster
member. Since it is guaranteed that only one cluster node manipulates the data at any moment,
this mode can be used with any conventional file system (ext3, ext4, XFS etc.).

Deploying DRBD in single-primary mode is the canonical approach for high availability (fail-over
capable) clusters.

2.2. Dual-primary�mode
In dual-primary mode, a resource is, at any given time, in the primary role on both cluster nodes.
Since concurrent access to the data is thus possible, this mode requires the use of a shared
cluster file system that utilizes a distributed lock manager. Examples include GFS [80] and
OCFS2 [83].

Deploying DRBD in dual-primary mode is the preferred approach for load-balancing clusters
which require concurrent data access from two nodes. This mode is disabled by default, and must
be enabled explicitly in DRBD’s configuration file.

See Section 6.5, “Enabling dual-primary mode” [37] for information on enabling dual-primary
mode for specific resources.

2.3. Replication�modes
DRBD supports three distinct replication modes, allowing three degrees of replication
synchronicity.

Protocol A. Asynchronous replication protocol. Local write operations on the primary node
are considered completed as soon as the local disk write has finished, and the replication packet
has been placed in the local TCP send buffer. In the event of forced fail-over, data loss may
occur. The data on the standby node is consistent after fail-over, however, the most recent
updates performed prior to the crash could be lost. Protocol A is most often used in long distance
replication scenarios. When used in combination with DRBD Proxy it makes an effective disaster
recovery solution. See Section 2.14, “Long-distance replication with DRBD Proxy” [11] for
more information.

Protocol B. Memory synchronous (semi-synchronous) replication protocol. Local write
operations on the primary node are considered completed as soon as the local disk write has
occurred, and the replication packet has reached the peer node. Normally, no writes are lost in
case of forced fail-over. However, in the event of simultaneous power failure on both nodes and
concurrent, irreversible destruction of the primary’s data store, the most recent writes completed
on the primary may be lost.

Protocol C. Synchronous replication protocol. Local write operations on the primary node are
considered completed only after both the local and the remote disk write have been confirmed.
As a result, loss of a single node is guaranteed not to lead to any data loss. Data loss is, of course,
inevitable even with this replication protocol if both nodes (or their storage subsystems) are
irreversibly destroyed at the same time.

DRBD Features

6

By far, the most commonly used replication protocol in DRBD setups is protocol C.

The choice of replication protocol influences two factors of your deployment: protection and
latency. Throughput, by contrast, is largely independent of the replication protocol selected.

See Section 5.3, “Configuring your resource” [26] for an example resource configuration
which demonstrates replication protocol configuration.

2.4. Multiple�replication�transports
DRBD’s replication and synchronization framework socket layer supports multiple low-level
transports:

TCP over IPv4. This is the canonical implementation, and DRBD’s default. It may be used on
any system that has IPv4 enabled.

TCP over IPv6. When configured to use standard TCP sockets for replication and
synchronization, DRBD can use also IPv6 as its network protocol. This is equivalent in semantics
and performance to IPv4, albeit using a different addressing scheme.

SDP. SDP is an implementation of BSD-style sockets for RDMA capable transports such as
InfiniBand. SDP is available as part of the OFED stack for most current distributions. SDP uses and
IPv4-style addressing scheme. Employed over an InfiniBand interconnect, SDP provides a high-
throughput, low-latency replication network to DRBD.

SuperSockets. SuperSockets replace the TCP/IP portions of the stack with a single, monolithic,
highly efficient and RDMA capable socket implementation. DRBD can use this socket type for very
low latency replication. SuperSockets must run on specific hardware which is currently available
from a single vendor, Dolphin Interconnect Solutions.

2.5. Efficient�synchronization
(Re-)synchronization is distinct from device replication. While replication occurs on any write
event to a resource in the primary role, synchronization is decoupled from incoming writes. Rather,
it affects the device as a whole.

Synchronization is necessary if the replication link has been interrupted for any reason, be it due
to failure of the primary node, failure of the secondary node, or interruption of the replication
link. Synchronization is efficient in the sense that DRBD does not synchronize modified blocks in
the order they were originally written, but in linear order, which has the following consequences:

• Synchronization is fast, since blocks in which several successive write operations occurred are
only synchronized once.

• Synchronization is also associated with few disk seeks, as blocks are synchronized according to
the natural on-disk block layout.

• During synchronization, the data set on the standby node is partly obsolete and partly already
updated. This state of data is called inconsistent.

The service continues to run uninterrupted on the active node, while background synchronization
is in progress.

Important

A node with inconsistent data generally cannot be put into operation, thus it is
desirable to keep the time period during which a node is inconsistent as short as
possible. DRBD does, however, ship with an LVM integration facility that automates
the creation of LVM snapshots immediately before synchronization. This ensures
that a consistent copy of the data is always available on the peer, even while

DRBD Features

7

synchronization is running. See Section 10.3, “Using automated LVM snapshots
during DRBD synchronization” [74] for details on using this facility.

2.5.1. Variable-rate�synchronization

In variable-rate synchronization (the default), DRBD detects the available bandwidth on the
synchronization network, compares it to incoming foreground application I/O, and selects an
appropriate synchronization rate based on a fully automatic control loop.

See Section 6.7.3, “Variable sync rate configuration” [40] for configuration suggestions with
regard to variable-rate synchronization.

2.5.2. Fixed-rate�synchronization

In fixed-rate synchronization, the amount of data shipped to the synchronizing peer per second
(the synchronization rate) has a configurable, static upper limit. Based on this limit, you may
estimate the expected sync time based on the following simple formula:

Synchronization time. tsync is the expected sync time. D is the amount of data to be
synchronized, which you are unlikely to have any influence over (this is the amount of data
that was modified by your application while the replication link was broken). R is the rate of
synchronization, which is configurable — bounded by the throughput limitations of the replication
network and I/O subsystem.

See Section 6.7, “Configuring the rate of synchronization” [39] for configuration suggestions
with regard to fixed-rate synchronization.

2.5.3. Checksum-based�synchronization

The efficiency of DRBD’s synchronization algorithm may be further enhanced by using data
digests, also known as checksums. When using checksum-based synchronization, then rather
than performing a brute-force overwrite of blocks marked out of sync, DRBD reads blocks
before synchronizing them and computes a hash of the contents currently found on disk. It then
compares this hash with one computed from the same sector on the peer, and omits re-writing
this block if the hashes match. This can dramatically cut down synchronization times in situation
where a filesystem re-writes a sector with identical contents while DRBD is in disconnected mode.

See Section 6.8, “Configuring checksum-based synchronization” [41] for configuration
suggestions with regard to synchronization.

2.6. Suspended�replication
If properly configured, DRBD can detect if the replication network is congested, and
suspend replication in this case. In this mode, the primary node "pulls ahead" of the
secondary — temporarily going out of sync, but still leaving a consistent copy on the secondary.
When more bandwidth becomes available, replication automatically resumes and a background
synchronization takes place.

Suspended replication is typically enabled over links with variable bandwidth, such as wide area
replication over shared connections between data centers or cloud instances.

See Section 6.9, “Configuring congestion policies and suspended replication” [41] for details
on congestion policies and suspended replication.

2.7. On-line�device�verification
On-line device verification enables users to do a block-by-block data integrity check between
nodes in a very efficient manner.

DRBD Features

8

Note that efficient refers to efficient use of network bandwidth here, and to the fact that
verification does not break redundancy in any way. On-line verification is still a resource-intensive
operation, with a noticeable impact on CPU utilization and load average.

It works by one node (the verification source) sequentially calculating a cryptographic digest
of every block stored on the lower-level storage device of a particular resource. DRBD then
transmits that digest to the peer node (the verification target), where it is checked against a digest
of the local copy of the affected block. If the digests do not match, the block is marked out-of-
sync and may later be synchronized. Because DRBD transmits just the digests, not the full blocks,
on-line verification uses network bandwidth very efficiently.

The process is termed on-line verification because it does not require that the DRBD resource
being verified is unused at the time of verification. Thus, though it does carry a slight performance
penalty while it is running, on-line verification does not cause service interruption or system down
time — neither during the verification run nor during subsequent synchronization.

It is a common use case to have on-line verification managed by the local cron daemon,
running it, for example, once a week or once a month. See Section 6.6, “Using on-line device
verification” [38] for information on how to enable, invoke, and automate on-line verification.

2.8. Replication�traffic�integrity�checking
DRBD optionally performs end-to-end message integrity checking using cryptographic message
digest algorithms such as MD5, SHA-1 or CRC-32C.

These message digest algorithms are not provided by DRBD. The Linux kernel crypto API provides
these; DRBD merely uses them. Thus, DRBD is capable of utilizing any message digest algorithm
available in a particular system’s kernel configuration.

With this feature enabled, DRBD generates a message digest of every data block it replicates
to the peer, which the peer then uses to verify the integrity of the replication packet. If the
replicated block can not be verified against the digest, the peer requests retransmission. Thus,
DRBD replication is protected against several error sources, all of which, if unchecked, would
potentially lead to data corruption during the replication process:

• Bitwise errors ("bit flips") occurring on data in transit between main memory and the network
interface on the sending node (which goes undetected by TCP checksumming if it is offloaded
to the network card, as is common in recent implementations);

• bit flips occuring on data in transit from the network interface to main memory on the receiving
node (the same considerations apply for TCP checksum offloading);

• any form of corruption due to a race conditions or bugs in network interface firmware or
drivers;

• bit flips or random corruption injected by some reassembling network component between
nodes (if not using direct, back-to-back connections).

See Section 6.11, “Configuring replication traffic integrity checking” [43] for information on
how to enable replication traffic integrity checking.

2.9. Split�brain�notification�and�automatic
recovery

Split brain is a situation where, due to temporary failure of all network links between cluster
nodes, and possibly due to intervention by a cluster management software or human error, both
nodes switched to the primary role while disconnected. This is a potentially harmful state, as it

DRBD Features

9

implies that modifications to the data might have been made on either node, without having been
replicated to the peer. Thus, it is likely in this situation that two diverging sets of data have been
created, which cannot be trivially merged.

DRBD split brain is distinct from cluster split brain, which is the loss of all connectivity between
hosts managed by a distributed cluster management application such as Heartbeat. To avoid
confusion, this guide uses the following convention:

• Split brain refers to DRBD split brain as described in the paragraph above.

• Loss of all cluster connectivity is referred to as a cluster partition, an alternative term for cluster
split brain.

DRBD allows for automatic operator notification (by email or other means) when it detects split
brain. See Section 6.14.1, “Split brain notification” [46] for details on how to configure this
feature.

While the recommended course of action in this scenario is to manually resolve [55] the split
brain and then eliminate its root cause, it may be desirable, in some cases, to automate the process.
DRBD has several resolution algorithms available for doing so:

• Discarding modifications made on the younger primary. In this mode, when the network
connection is re-established and split brain is discovered, DRBD will discard modifications made,
in the meantime, on the node which switched to the primary role last.

• Discarding modifications made on the older primary. In this mode, DRBD will discard
modifications made, in the meantime, on the node which switched to the primary role first.

• Discarding modifications on the primary with fewer changes. In this mode, DRBD will check
which of the two nodes has recorded fewer modifications, and will then discard all modifications
made on that host.

• Graceful recovery from split brain if one host has had no intermediate changes. In this
mode, if one of the hosts has made no modifications at all during split brain, DRBD will simply
recover gracefully and declare the split brain resolved. Note that this is a fairly unlikely scenario.
Even if both hosts only mounted the file system on the DRBD block device (even read-only),
the device contents would be modified, ruling out the possibility of automatic recovery.

Whether or not automatic split brain recovery is acceptable depends largely on the individual
application. Consider the example of DRBD hosting a database. The discard modifications from
host with fewer changes approach may be fine for a web application click-through database. By
contrast, it may be totally unacceptable to automatically discard any modifications made to a
financial database, requiring manual recovery in any split brain event. Consider your application’s
requirements carefully before enabling automatic split brain recovery.

Refer to Section 6.14.2, “Automatic split brain recovery policies” [47] for details on
configuring DRBD’s automatic split brain recovery policies.

2.10. Support�for�disk�flushes
When local block devices such as hard drives or RAID logical disks have write caching enabled,
writes to these devices are considered completed as soon as they have reached the volatile cache.
Controller manufacturers typically refer to this as write-back mode, the opposite being write-
through. If a power outage occurs on a controller in write-back mode, the last writes are never
committed to the disk, potentially causing data loss.

To counteract this, DRBD makes use of disk flushes. A disk flush is a write operation that completes
only when the associated data has been committed to stable (non-volatile) storage — that is to
say, it has effectively been written to disk, rather than to the cache. DRBD uses disk flushes for
write operations both to its replicated data set and to its meta data. In effect, DRBD circumvents

DRBD Features

10

the write cache in situations it deems necessary, as in activity log [106] updates or enforcement
of implicit write-after-write dependencies. This means additional reliability even in the face of
power failure.

It is important to understand that DRBD can use disk flushes only when layered on top of backing
devices that support them. Most reasonably recent kernels support disk flushes for most SCSI
and SATA devices. Linux software RAID (md) supports disk flushes for RAID-1 provided that all
component devices support them too. The same is true for device-mapper devices (LVM2, dm-
raid, multipath).

Controllers with battery-backed write cache (BBWC) use a battery to back up their volatile
storage. On such devices, when power is restored after an outage, the controller flushes all
pending writes out to disk from the battery-backed cache, ensuring that all writes committed
to the volatile cache are actually transferred to stable storage. When running DRBD on top
of such devices, it may be acceptable to disable disk flushes, thereby improving DRBD’s write
performance. See Section 6.13, “Disabling backing device flushes” [46] for details.

2.11. Disk�error�handling�strategies
If a hard drive fails which is used as a backing block device for DRBD on one of the nodes, DRBD
may either pass on the I/O error to the upper layer (usually the file system) or it can mask I/O
errors from upper layers.

Passing on I/O errors. If DRBD is configured to pass on I/O errors, any such errors occuring on
the lower-level device are transparently passed to upper I/O layers. Thus, it is left to upper layers
to deal with such errors (this may result in a file system being remounted read-only, for example).
This strategy does not ensure service continuity, and is hence not recommended for most users.

Masking I/O errors. If DRBD is configured to detach on lower-level I/O error, DRBD will do
so, automatically, upon occurrence of the first lower-level I/O error. The I/O error is masked
from upper layers while DRBD transparently fetches the affected block from the peer node, over
the network. From then onwards, DRBD is said to operate in diskless mode, and carries out all
subsequent I/O operations, read and write, on the peer node. Performance in this mode will be
reduced, but the service continues without interruption, and can be moved to the peer node in
a deliberate fashion at a convenient time.

See Section 6.10, “Configuring I/O error handling strategies” [42] for information on
configuring I/O error handling strategies for DRBD.

2.12. Strategies�for�dealing�with�outdated�data
DRBD distinguishes between inconsistent and outdated data. Inconsistent data is data that cannot
be expected to be accessible and useful in any manner. The prime example for this is data on
a node that is currently the target of an on-going synchronization. Data on such a node is part
obsolete, part up to date, and impossible to identify as either. Thus, for example, if the device
holds a filesystem (as is commonly the case), that filesystem would be unexpected to mount or
even pass an automatic filesystem check.

Outdated data, by contrast, is data on a secondary node that is consistent, but no longer in
sync with the primary node. This would occur in any interruption of the replication link, whether
temporary or permanent. Data on an outdated, disconnected secondary node is expected to be
clean, but it reflects a state of the peer node some time past. In order to avoid services using
outdated data, DRBD disallows promoting a resource [3] that is in the outdated state.

DRBD has interfaces that allow an external application to outdate a secondary node as soon
as a network interruption occurs. DRBD will then refuse to switch the node to the primary
role, preventing applications from using the outdated data. A complete implementation of this
functionality exists for the Pacemaker cluster management framework [58] (where it uses

DRBD Features

11

a communication channel separate from the DRBD replication link). However, the interfaces are
generic and may be easily used by any other cluster management application.

Whenever an outdated resource has its replication link re-established, its outdated flag is
automatically cleared. A background synchronization [6] then follows.

See the section about the DRBD outdate-peer daemon (dopd) [60] for an example DRBD/
Heartbeat/Pacemaker configuration enabling protection against inadvertent use of outdated
data.

2.13. Three-way�replication

Note

Available in DRBD version 8.3.0 and above

When using three-way replication, DRBD adds a third node to an existing 2-node cluster and
replicates data to that node, where it can be used for backup and disaster recovery purposes.

Three-way replication works by adding another, stacked DRBD resource on top of the existing
resource holding your production data, as seen in this illustration:

Figure 2.1. DRBD resource stacking

Primary BackupSecondary

Upper layer

Lower layer

The stacked resource is replicated using asynchronous replication (DRBD protocol A), whereas
the production data would usually make use of synchronous replication (DRBD protocol C).

Three-way replication can be used permanently, where the third node is continously updated
with data from the production cluster. Alternatively, it may also be employed on demand,
where the production cluster is normally disconnected from the backup site, and site-to-site
synchronization is performed on a regular basis, for example by running a nightly cron job.

2.14. Long-distance�replication�with�DRBD
Proxy

Note

DRBD Proxy requires DRBD version 8.2.7 or above.

DRBD Features

12

DRBD’s protocol A [5] is asynchronous, but the writing application will block as soon as the
socket output buffer is full (see the sndbuf-size option in drbd.conf(5) [119]). In that event,
the writing application has to wait until some of the data written runs off through a possibly small
bandwith network link.

The average write bandwith is limited by available bandwith of the network link. Write bursts can
only be handled gracefully if they fit into the limited socket output buffer.

You can mitigate this by DRBD Proxy’s buffering mechanism. DRBD Proxy will suck up all available
data from the DRBD on the primary node into its buffers. DRBD Proxy’s buffer size is freely
configurable, only limited by the address room size and available physical RAM.

Optionally DRBD Proxy can be configured to compress and decompress the data it forwards.
Compression and decompression of DRBD’s data packets might slightly increase latency. But when
the bandwidth of the network link is the limiting factor, the gain in shortening transmit time
outweighs the compression and decompression overhead by far.

Compression and decompression were implemented with multi core SMP systems in mind, and
can utilize multiple CPU cores.

The fact that most block I/O data compresses very well and therefore the effective bandwidth
increases well justifies the use of the DRBD Proxy even with DRBD protocols B and C.

See Section 6.16, “Using DRBD Proxy” [50] for information on configuring DRBD Proxy.

Note

DRBD Proxy is the only part of the DRBD product family that is not published under
an open source license. Please contact sales@linbit.com [mailto:sales@linbit.com] or
sales_us@linbit.com [mailto:sales_us@linbit.com] for an evaluation license.

2.15. Truck�based�replication
Truck based replication, also known as disk shipping, is a means of preseeding a remote site with
data to be replicated, by physically shipping storage media to the remote site. This is particularly
suited for situations where

• the total amount of data to be replicated is fairly large (more than a few hundreds of gigabytes);

• the expected rate of change of the data to be replicated is less than enormous;

• the available network bandwidth between sites is limited.

In such situations, without truck based replication, DRBD would require a very long initial device
synchronization (on the order of days or weeks). Truck based replication allows us to ship a data
seed to the remote site, and drastically reduce the initial synchronization time. See Section 5.6,
“Using truck based replication” [30] for details on this use case.

2.16. Floating�peers

Note

This feature is available in DRBD versions 8.3.2 and above.

A somewhat special use case for DRBD is the floating peers configuration. In floating peer setups,
DRBD peers are not tied to specific named hosts (as in conventional configurations), but instead
have the ability to float between several hosts. In such a configuration, DRBD identifies peers by
IP address, rather than by host name.

mailto:sales@linbit.com
mailto:sales@linbit.com
mailto:sales_us@linbit.com
mailto:sales_us@linbit.com

DRBD Features

13

For more information about managing floating peer configurations, see Section 8.5, “Configuring
DRBD to replicate between two SAN-backed Pacemaker clusters” [66].

Part II. Building,�installing
and�configuring�DRBD

15

Chapter 3. Installing�pre-built�DRBD
binary�packages

3.1. Packages�supplied�by�LINBIT
LINBIT, the DRBD project’s sponsor company, provides DRBD binary packages to its commercial
support customers. These packages are available at http://www.linbit.com/support/ and are
considered "official" DRBD builds.

These builds are available for the following distributions:

• Red Hat Enterprise Linux (RHEL), versions and 5 6

• SUSE Linux Enterprise Server (SLES), versions 10, and 11

• Debian GNU/Linux, versions 5.0 (lenny) and 6.0 (squeeze)

• Ubuntu Server Edition LTS, versions and 8.04 (Hardy Heron) and 10.04 (Lucid Lynx).

LINBIT releases binary builds in parallel with any new DRBD source release.

Package installation on RPM-based systems (SLES, RHEL) is done by simply invoking rpm -i
(for new installations) or rpm -U (for upgrades), along with the corresponding package names.

For Debian-based systems (Debian GNU/Linux, Ubuntu) systems, drbd8-utils and drbd8-
module packages are installed with dpkg -i, or gdebi if available.

3.2. Packages�supplied�by�distribution�vendors
A number of distributions include DRBD, including pre-built binary packages. Support for these
builds, if any, is being provided by the associated distribution vendor. Their release cycle may lag
behind DRBD source releases.

3.2.1. SUSE�Linux�Enterprise�Server

SUSE Linux Enterprise Server (SLES), includes DRBD 0.7 in versions 9 and 10. DRBD 8.3 is
included in SLES 11 High Availability Extension (HAE) SP1.

On SLES, DRBD is normally installed via the software installation component of YaST2. It comes
bundled with the High Availability package selection.

Users who prefer a command line install may simply issue:

yast -i drbd

or

zypper install drbd

3.2.2. Debian�GNU/Linux

Debian GNU/Linux includes DRBD 8 from the 5.0 release (lenny) onwards. In 6.0 (squeeze),
which is based on a 2.6.32 Linux kernel, Debian ships a backported version of DRBD.

On squeeze, since DRBD is already included with the stock kernel, all that is needed to install
is the drbd8-utils package:

http://www.linbit.com/support/

Installing pre-built
DRBD binary packages

16

apt-get install drbd8-utils

On lenny (obsolete), you install DRBD by issuing:

apt-get install drbd8-utils drbd8-module

3.2.3. CentOS

CentOS has had DRBD 8 since release 5.

DRBD can be installed using yum (note that you will need the extras repository enabled for
this to work):

yum install drbd kmod-drbd

3.2.4. Ubuntu�Linux

To install DRBD on Ubuntu, you issue these commands:

apt-get update
apt-get install drbd8-utils drbd8-module

17

Chapter 4. Building�and�installing�DRBD
from�source

4.1. Downloading�the�DRBD�sources
The source tarballs for both current and historic DRBD releases are available for download from
http://oss.linbit.com/drbd/. Source tarballs, by convention, are named drbd-x.y.z.tar.gz,
where x, y and z refer to the major, minor and bugfix release numbers.

DRBD’s compressed source archive is less than half a megabyte in size. To download and
uncompress into your current working directory, issue the following commands:

wget http://oss.linbit.com/drbd/8.4/drbd-8.4.0.tar.gz
tar -xzf drbd-8.4.0.tar.gz

Note

The use of wget for downloading the source tarball is purely an example. Of course,
you may use any downloader you prefer.

It is recommended to uncompress DRBD into a directory normally used for keeping source code,
such as /usr/src or /usr/local/src. The examples in this guide assume /usr/src.

4.2. Checking�out�sources�from�the�public�DRBD
source�repository

DRBD’s source code is kept in a public Git [http://git.or.cz] repository, which may be browsed
on-line at http://git.drbd.org/. To check out a specific DRBD release from the repository, you
must first clone your preferred DRBD branch. In this example, you would clone from the DRBD
8.4 branch:

git clone git://git.drbd.org/drbd-8.4.git

If your firewall does not permit TCP connections to port 9418, you may also check out via HTTP
(please note that using Git via HTTP is much slower than its native protocol, so native Git is usually
preferred whenever possible):

git clone http://git.drbd.org/drbd-8.4.git

Either command will create a Git checkout subdirectory, named drbd-8.4. To now move to a
source code state equivalent to a specific DRBD release, issue the following commands:

cd drbd-8.4
git checkout drbd-8.4.<x>

i. where <x> refers to the DRBD point release you wish to build.

The checkout directory will now contain the equivalent of an unpacked DRBD source tarball of a
that specific version, enabling you to build DRBD from source.

There are actually two minor differences between an unpacked source tarball and a Git checkout
of the same release:

• The Git checkout contains a debian/ subdirectoy, while the source tarball does not. This is due
to a request from Debian maintainers, who prefer to add their own Debian build configuration
to a pristine upstream tarball.

http://oss.linbit.com/drbd/
http://git.or.cz
http://git.or.cz
http://git.drbd.org/

Building and installing
DRBD from source

18

• The source tarball contains preprocessed man pages, the Git checkout does not. Thus, building
DRBD from a Git checkout requires a complete Docbook toolchain for building the man pages,
while this is not a requirement for building from a source tarball.

4.3. Building�DRBD�from�source

4.3.1. Checking�build�prerequisites

Before being able to build DRBD from source, your build host must fulfill the following
prerequisites:

• make, gcc, the glibc development libraries, and the flex scanner generator must be
installed.

Note

You should make sure that the gcc you use to compile the module is the same which
was used to build the kernel you are running. If you have multiple gcc versions
available on your system, DRBD’s build system includes a facility to <link linkend="s-
build-customcc">select a specific gcc version.

• For building directly from a git checkout, GNU Autoconf is also required. This requirement does
not apply when building from a tarball.

• If you are running a stock kernel supplied by your distribution, you should install a matching
precompiled kernel headers package. These are typically named kernel-dev, kernel-
headers, linux-headers or similar. In this case, you can skip Section 4.3.2, “Preparing
the kernel source tree” [18] and continue with Section 4.3.3, “Preparing the DRBD build
tree” [19].

• If you are not running a distribution stock kernel (i.e. your system runs on a kernel built from
source with a custom configuration), your kernel source files must be installed. Your distribution
may provide for this via its package installation mechanism; distribution packages for kernel
sources are typically named kernel-source or similar.

Note

On RPM-based systems, these packages will be named similar to
kernel-source-version.rpm, which is easily confused with kernel-
version.src.rpm. The former is the correct package to install for building DRBD.

"Vanilla" kernel tarballs from the kernel.org archive are simply named linux-version-tar.bz2 and
should be unpacked in /usr/src/linux-version, with the symlink /usr/src/linux
pointing to that directory.

In this case of building DRBD against kernel sources (not headers), you must continue with
Section 4.3.2, “Preparing the kernel source tree” [18].

4.3.2. Preparing�the�kernel�source�tree

To prepare your source tree for building DRBD, you must first enter the directory where your
unpacked kernel sources are located. Typically this is /usr/src/linux-version, or simply a
symbolic link named /usr/src/linux:

cd /usr/src/linux

The next step is recommended, though not strictly necessary. Be sure to copy your existing
.config file to a safe location before performing it. This step essentially reverts your kernel
source tree to its original state, removing any leftovers from an earlier build or configure run:

Building and installing
DRBD from source

19

make mrproper

Now it is time to clone your currently running kernel configuration into the kernel source tree.
There are a few possible options for doing this:

• Many reasonably recent kernel builds export the currently-running configuration, in
compressed form, via the /proc filesystem, enabling you to copy from there:

zcat /proc/config.gz > .config

• SUSE kernel Makefiles include a cloneconfig target, so on those systems, you can issue:

make cloneconfig

• Some installs put a copy of the kernel config into /boot, which allows you to do this:

cp /boot/config-`uname -r` .config

• Finally, you may simply use a backup copy of a .config file which you know to have been
used for building the currently-running kernel.

4.3.3. Preparing�the�DRBD�build�tree

Any DRBD compilation requires that you first configure your DRBD source tree with the included
configure script.

Note

When building from a git checkout, the configure script does not yet exist. You
must create it by simply typing autoconf at the top of the checkout.

Invoking the configure script with the --help option returns a full list of supported options. The
table below summarizes the most important ones:

Table 4.1. Options supported by DRBD’s configure script

Option Description Default Remarks

--prefix Installation directory
prefix

/usr/local This is the default to
maintain Filesystem
Hierarchy Standard
compatibility for
locally installed,
unpackaged software.
In packaging, this is
typically overridden
with /usr+.

--localstatedir Local state directory /usr/local/var Even with a default
prefix, most users
will want to override
this with /var.

--sysconfdir System configuration
directory

/usr/local/etc Even with a default
prefix, most users
will want to override
this with /etc.

--with-km Build the DRBD kernel
module

no Enable this option
when you are building

Building and installing
DRBD from source

20

Option Description Default Remarks
a DRBD kernel
module.

--with-utils Build the DRBD
userland utilities

yes Disable this option
when you are building
a DRBD kernel module
against a new kernel
version, and not
upgrading DRBD at
the same time.

--with-heartbeat Build DRBD Heartbeat
integration

yes You may disable this
option unless you
are planning to use
DRBD’s Heartbeat
v1 resource agent or
dopd.

--with-pacemaker Build DRBD
Pacemaker integration

yes You may disable this
option if you are not
planning to use the
Pacemaker cluster
resource manager.

--with-rgmanager Build DRBD Red
Hat Cluster Suite
integration

no You should enable
this option if you
are planning to use
DRBD with rgmanager,
the Red Hat Cluster
Suite cluster resource
manager.

--with-xen Build DRBD Xen
integration

yes (on x86
architectures)

You may disable this
option if you are
not planning to use
the block-drbd
helper script for Xen
integration.

--with-
bashcompletion

Build programmable
bash completion for
drbdadm

yes You may disable
this option if you
are using a shell
other than bash, or
if you do not want to
utilize programmable
completion for the
drbdadm command.

--enable-spec Create a distribution
specific RPM spec file

no For package builders
only: you may use this
option if you want
to create an RPM
spec file adapted to
your distribution.
See also Section 4.4,
“Building a DRBD RPM
package” [22].

The configure script will adapt your DRBD build to distribution specific needs. It does so by
auto-detecting which distribution it is being invoked on, and setting defaults accordingly. When
overriding defaults, do so with caution.

Building and installing
DRBD from source

21

The configure script creates a log file, config.log, in the directory where it was invoked. When
reporting build issues on the mailing list, it is usually wise to either attach a copy of that file to
your email, or point others to a location from where it may be viewed or downloaded.

4.3.4. Building�DRBD�userspace�utilities

Building userspace utilities requires that you configured DRBD with the --with-utils
option [19], which is enabled by default.

To build DRBD’s userspace utilities, invoke the following commands from the top of your DRBD
checkout or expanded tarball:

$ make
$ sudo make install

This will build the management utilities (drbdadm, drbdsetup, and drbdmeta), and install
them in the appropriate locations. Based on the other --with options selected during the
configure stage [19], it will also install scripts to integrate DRBD with other applications.

4.3.5. Compiling�DRBD�as�a�kernel�module

Building the DRBD kernel module requires that you configured DRBD with the --with-km
option [19], which is disabled by default.

4.3.5.1. Building�DRBD�for�the�currently-running�kernel

After changing into your unpacked DRBD sources directory, you should now change into the
kernel module subdirectory, simply named drbd, and build the module there:

cd drbd
make clean all

This will build the DRBD kernel module to match your currently-running kernel, whose kernel
source is expected to be accessible via the /lib/modules/uname -r/build symlink.

4.3.5.2. Building�against�precompiled�kernel�headers

If the /lib/modules/uname -r/build symlink does not exist, and you are building against
a running stock kernel (one that was shipped pre-compiled with your distribution), you may
also set the KDIR variable to point to the matching kernel headers (as opposed to kernel
sources) directory. Note that besides the actual kernel headers — commonly found in /usr/
src/linux-version/include— the DRBD build process also looks for the kernel Makefile
and configuration file (.config), which pre-built kernel headers packages commonly include.

To build against precompiled kernel headers, issue, for example:

$ cd drbd
$ make clean
$ make KDIR=/lib/modules/2.6.38/build

4.3.5.3. Building�against�a�kernel�source�tree

If you are building DRBD against a kernel other than your currently running one, and you do not
have precompiled kernel sources for your target kernel available, you need to build DRBD against
a complete target kernel source tree. To do so, set the KDIR variable to point to the kernel sources
directory:

$ cd drbd
$ make clean

Building and installing
DRBD from source

22

$ make KDIR=/path/to/kernel/source

4.3.5.4. Using�a�non-default�C�compiler

You also have the option of setting the compiler explicitly via the CC variable. This is known to be
necessary on some Fedora versions, for example:

cd drbd
make clean
make CC=gcc32

4.3.5.5. Checking�for�successful�build�completion

If the module build completes successfully, you should see a kernel module file named drbd.ko
in the drbd directory. You may interrogate the newly-built module with /sbin/modinfo drbd.ko
if you are so inclined.

4.4. Building�a�DRBD�RPM�package
The DRBD build system contains a facility to build RPM packages directly out of the DRBD source
tree. For building RPMs, Section 4.3.1, “Checking build prerequisites” [18] applies essentially
in the same way as for building and installing with make, except that you also need the RPM build
tools, of course.

Also, see Section 4.3.2, “Preparing the kernel source tree” [18] if you are not building against
a running kernel with precompiled headers available.

The build system offers two approaches for building RPMs. The simpler approach is to simply
invoke the rpm target in the top-level Makefile:

$./configure
$ make rpm
$ make km-rpm

This approach will auto-generate spec files from pre-defined templates, and then use those spec
files to build binary RPM packages.

The make rpm approach generates a number of RPM packages:

Table 4.2. DRBD userland RPM packages

Package name Description Dependencies Remarks

drbd DRBD meta-package All other drbd-*
packages

Top-level virtual
package. When
installed, this
pulls in all other
userland packages as
dependencies.

drbd-utils Binary administration
utilities

Required for any
DRBD enabled host

drbd-udev udev integration
facility

drbd-utils, udev Enables udev to
manage user-friendly
symlinks to DRBD
devices

drbd-xen Xen DRBD helper
scripts

drbd-utils, xen Enables xend to
auto-manage DRBD
resources

Building and installing
DRBD from source

23

Package name Description Dependencies Remarks

drbd-heartbeat DRBD Heartbeat
integration scripts

drbd-utils,
heartbeat

Enables DRBD
management by
legacy v1-style
Heartbeat clusters

drbd-pacemaker DRBD Pacemaker
integration scripts

drbd-utils,
pacemaker

Enables DRBD
management by
Pacemaker clusters

drbd-rgmanager DRBD Red Hat Cluster
Suite integration
scripts

drbd-utils,
rgmanager

Enables DRBD
management by
rgmanager, the Red
Hat Cluster Suite
resource manager

drbd-
bashcompletion

Progammable bash
completion

drbd-utils, bash-
completion

Enables Programmable
bash completion for
the drbdadm utility

The other, more flexible approach is to have configure generate the spec file, make any
changes you deem necessary, and then use the rpmbuild command:

$./configure --enable-spec
$ make tgz
$ cp drbd*.tar.gz `rpm -E _sourcedir`
$ rpmbuild -bb drbd.spec

If you are about to build RPMs for both the DRBD userspace utilities and the kernel module, use:

$./configure --enable-spec --with-km
$ make tgz
$ cp drbd*.tar.gz `rpm -E _sourcedir`
$ rpmbuild -bb drbd.spec
$ rpmbuild -bb drbd-kernel.spec

The RPMs will be created wherever your system RPM configuration (or your personal
~/.rpmmacros configuration) dictates.

After you have created these packages, you can install, upgrade, and uninstall them as you would
any other RPM package in your system.

Note that any kernel upgrade will require you to generate a new drbd-km package to match the
new kernel.

The DRBD userland packages, in contrast, need only be recreated when upgrading to a new DRBD
version. If at any time you upgrade to a new kernel and new DRBD version, you will need to
upgrade both packages.

4.5. Building�a�DRBD�Debian�package
The DRBD build system contains a facility to build Debian packages directly out of the DRBD
source tree. For building Debian packages, Section 4.3.1, “Checking build prerequisites” [18]
applies essentially in the same way as for building and installing with make, except that you of
course also need the dpkg-dev package containing the Debian packaging tools, and fakeroot
if you want to build DRBD as a non-root user (highly recommended).

Also, see Section 4.3.2, “Preparing the kernel source tree” [18] if you are not building against
a running kernel with precompiled headers available.

Building and installing
DRBD from source

24

The DRBD source tree includes a debian subdirectory containing the required files for Debian
packaging. That subdirectory, however, is not included in the DRBD source tarballs — instead, you
will need to create a Git checkout [17] of a tag associated with a specific DRBD release.

Once you have created your checkout in this fashion, you can issue the following commands to
build DRBD Debian packages:

dpkg-buildpackage -rfakeroot -b -uc

Note

This (example) drbd-buildpackage invocation enables a binary-only build (-
b) by a non-root user (-rfakeroot), disabling cryptographic signature for the
changes file (-uc). Of course, you may prefer other build options, see the dpkg-
buildpackage man page for details.

This build process will create two Debian packages:

• A package containing the DRBD userspace tools, named drbd8-utils_x.y.z-
BUILD_ARCH.deb;

• A module source package suitable for module-assistant named drbd8-module-
source_x.y.z-BUILD_all.deb.

After you have created these packages, you can install, upgrade, and uninstall them as you would
any other Debian package in your system.

Building and installing the actual kernel module from the installed module source package is easily
accomplished via Debian’s module-assistant facility:

module-assistant auto-install drbd8

You may also use the shorthand form of the above command:

m-a a-i drbd8

Note that any kernel upgrade will require you to rebuild the kernel module (with module-
assistant, as just described) to match the new kernel. The drbd8-utils and drbd8-
module-source packages, in contrast, only need to be recreated when upgrading to a new
DRBD version. If at any time you upgrade to a new kernel and new DRBD version, you will need
to upgrade both packages.

25

Chapter 5. Configuring�DRBD

5.1. Preparing�your�lower-level�storage
After you have installed DRBD, you must set aside a roughly identically sized storage area on both
cluster nodes. This will become the lower-level device for your DRBD resource. You may use any
type of block device found on your system for this purpose. Typical examples include:

• A hard drive partition (or a full physical hard drive),

• a software RAID device,

• an LVM Logical Volume or any other block device configured by the Linux device-mapper
infrastructure,

• any other block device type found on your system.

You may also use resource stacking, meaning you can use one DRBD device as a lower-level
device for another. Some specific considerations apply to stacked resources; their configuration
is covered in detail in Section 6.15, “Creating a three-node setup” [48].

Note

While it is possible to use loop devices as lower-level devices for DRBD, doing so is
not recommended due to deadlock issues.

It is not necessary for this storage area to be empty before you create a DRBD resource from it.
In fact it is a common use case to create a two-node cluster from a previously non-redundant
single-server system using DRBD (some caveats apply — please refer to Section 17.1, “DRBD
meta data” [101] if you are planning to do this).

For the purposes of this guide, we assume a very simple setup:

• Both hosts have a free (currently unused) partition named /dev/sda7.

• We are using internal meta data [101].

5.2. Preparing�your�network�configuration
It is recommended, though not strictly required, that you run your DRBD replication over a
dedicated connection. At the time of this writing, the most reasonable choice for this is a direct,
back-to-back, Gigabit Ethernet connection. When DRBD is run over switches, use of redundant
components and the bonding driver (in active-backup mode) is recommended.

It is generally not recommended to run DRBD replication via routers, for reasons of fairly obvious
performance drawbacks (adversely affecting both throughput and latency).

In terms of local firewall considerations, it is important to understand that DRBD (by convention)
uses TCP ports from 7788 upwards, with every resource listening on a separate port. DRBD uses
two TCP connections for every resource configured. For proper DRBD functionality, it is required
that these connections are allowed by your firewall configuration.

Security considerations other than firewalling may also apply if a Mandatory Access Control
(MAC) scheme such as SELinux or AppArmor is enabled. You may have to adjust your local security
policy so it does not keep DRBD from functioning properly.

Configuring DRBD

26

You must, of course, also ensure that the TCP ports for DRBD are not already used by another
application.

It is not possible to configure a DRBD resource to support more than one TCP connection. If you
want to provide for DRBD connection load-balancing or redundancy, you can easily do so at the
Ethernet level (again, using the bonding driver).

For the purposes of this guide, we assume a very simple setup:

• Our two DRBD hosts each have a currently unused network interface, eth1, with IP addresses
10.1.1.31 and 10.1.1.32 assigned to it, respectively.

• No other services are using TCP ports 7788 through 7799 on either host.

• The local firewall configuration allows both inbound and outbound TCP connections between
the hosts over these ports.

5.3. Configuring�your�resource
All aspects of DRBD are controlled in its configuration file, /etc/drbd.conf. Normally, this
configuration file is just a skeleton with the following contents:

include "/etc/drbd.d/global_common.conf";
include "/etc/drbd.d/*.res";

By convention, /etc/drbd.d/global_common.conf contains the global [28] and
common [28] sections of the DRBD configuration, whereas the .res files contain one
resource [28] section each.

It is also possible to use drbd.conf as a flat configuration file without any include statements
at all. Such a configuration, however, quickly becomes cluttered and hard to manage, which is
why the multiple-file approach is the preferred one.

Regardless of which approach you employ, you should always make sure that drbd.conf, and
any other files it includes, are exactly identical on all participating cluster nodes.

The DRBD source tarball contains an example configuration file in the scripts subdirectory.
Binary installation packages will either install this example configuration directly in /etc, or in a
package-specific documentation directory such as /usr/share/doc/packages/drbd.

This section describes only those few aspects of the configuration file which are absolutely
necessary to understand in order to get DRBD up and running. The configuration file’s syntax and
contents are documented in great detail in drbd.conf(5) [119].

5.3.1. Example�configuration

For the purposes of this guide, we assume a minimal setup in line with the examples given in the
previous sections:

Simple DRBD configuration (/etc/drbd.d/global_common.conf).

global {
 usage-count yes;
}
common {
 net {
 protocol C;
 }
}

Configuring DRBD

27

Simple DRBD resource configuration (/etc/drbd.d/r0.res).

resource r0 {
 on alice {
 device /dev/drbd1;
 disk /dev/sda7;
 address 10.1.1.31:7789;
 meta-disk internal;
 }
 on bob {
 device /dev/drbd1;
 disk /dev/sda7;
 address 10.1.1.32:7789;
 meta-disk internal;
 }
}

This example configures DRBD in the following fashion:

• You "opt in" to be included in DRBD’s usage statistics (see usage-count [28]).

• Resources are configured to use fully synchronous replication (Protocol C [5]) unless explicitly
specified otherwise.

• Our cluster consists of two nodes, alice and bob.

• We have a resource arbitrarily named r0 which uses /dev/sda7 as the lower-level device,
and is configured with internal meta data [101].

• The resource uses TCP port 7789 for its network connections, and binds to the IP addresses
10.1.1.31 and 10.1.1.32, respectively.

The configuration above implicitly creates one volume in the resource, numbered zero (0). For
multiple volumes in one resource, modify the syntax as follows:

Multi-volume DRBD resource configuration (/etc/drbd.d/r0.res).

resource r0 {
 volume 0 {
 device /dev/drbd1;
 disk /dev/sda7;
 meta-disk internal;
 }
 volume 1 {
 device /dev/drbd2;
 disk /dev/sda8;
 meta-disk internal;
 }
 on alice {
 address 10.1.1.31:7789;
 }
 on bob {
 address 10.1.1.32:7789;
 }
}

Note

Volumes may also be added to existing resources on the fly. For an example see
Section 10.5, “Adding a new DRBD volume to an existing Volume Group” [76].

Configuring DRBD

28

5.3.2. The�global�section
This section is allowed only once in the configuration. It is normally in the /etc/drbd.d/
global_common.conf file. In a single-file configuration, it should go to the very top of the
configuration file. Of the few options available in this section, only one is of relevance to most
users:

usage-count. The DRBD project keeps statistics about the usage of various DRBD versions.
This is done by contacting an HTTP server every time a new DRBD version is installed on a system.
This can be disabled by setting usage-count no;. The default is usage-count ask; which
will prompt you every time you upgrade DRBD.

DRBD’s usage statistics are, of course, publicly available: see http://usage.drbd.org.

5.3.3. The�common�section
This section provides a shorthand method to define configuration settings inherited by every
resource. It is normally found in /etc/drbd.d/global_common.conf. You may define any
option you can also define on a per-resource basis.

Including a common section is not strictly required, but strongly recommended if you are
using more than one resource. Otherwise, the configuration quickly becomes convoluted by
repeatedly-used options.

In the example above, we included net { protocol C; } in the common section, so every
resource configured (including r0) inherits this option unless it has another protocol option
configured explicitly. For other synchronization protocols available, see Section 2.3, “Replication
modes” [5].

5.3.4. The�resource�sections
A per-resource configuration file is usually named /etc/drbd.d/<resource>.res. Any
DRBD resource you define must be named by specifying resource name in the configuration. You
may use any arbitrary identifier, however the name must not contain characters other than those
found in the US-ASCII character set, and must also not include whitespace.

Every resource configuration must also have two on <host> sub-sections (one for every cluster
node). All other configuration settings are either inherited from the common section (if it exists),
or derived from DRBD’s default settings.

In addition, options with equal values on both hosts can be specified directly in the resource
section. Thus, we can further condense our example configuration as follows:

resource r0 {
 device /dev/drbd1;
 disk /dev/sda7;
 meta-disk internal;
 on alice {
 address 10.1.1.31:7789;
 }
 on bob {
 address 10.1.1.32:7789;
 }
}

5.4. Enabling�your�resource�for�the�first�time
After you have completed initial resource configuration as outlined in the previous sections, you
can bring up your resource.

http://usage.drbd.org

Configuring DRBD

29

Each of the following steps must be completed on both nodes.

Create device metadata. This step must be completed only on initial device creation. It
initializes DRBD’s metadata:

drbdadm create-md resource
v08 Magic number not found
Writing meta data...
initialising activity log
NOT initializing bitmap
New drbd meta data block sucessfully created.

Enable the resource. This step associates the resource with its backing device (or devices, in
case of a multi-volume resource), sets replication parameters, and connects the resource to its
peer:

drbdadm up resource

Observe /proc/drbd. DRBD’s virtual status file in the /proc filesystem, /proc/drbd,
should now contain information similar to the following:

cat /proc/drbd
version: 8.3.0 (api:88/proto:86-89)
GIT-hash: 9ba8b93e24d842f0dd3fb1f9b90e8348ddb95829 build by buildsystem@linbit, 2008-12-18 16:02:26
1: cs:Connected ro:Secondary/Secondary ds:Inconsistent/Inconsistent C r---
ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:200768

Note

The Inconsistent/Inconsistent disk state is expected at this point.

By now, DRBD has successfully allocated both disk and network resources and is ready for
operation. What it does not know yet is which of your nodes should be used as the source of the
initial device synchronization.

5.5. The�initial�device�synchronization
There are two more steps required for DRBD to become fully operational:

Select an initial sync source. If you are dealing with newly-initialized, empty disk, this choice
is entirely arbitrary. If one of your nodes already has valuable data that you need to preserve,
however, it is of crucial importance that you select that node as your synchronization source. If you
do initial device synchronization in the wrong direction, you will lose that data. Exercise caution.

Start the initial full synchronization. This step must be performed on only one node, only on
initial resource configuration, and only on the node you selected as the synchronization source.
To perform this step, issue this command:

drbdadm primary --force resource

After issuing this command, the initial full synchronization will commence. You will be able to
monitor its progress via /proc/drbd. It may take some time depending on the size of the device.

By now, your DRBD device is fully operational, even before the initial synchronization has
completed (albeit with slightly reduced performance). You may now create a filesystem on the
device, use it as a raw block device, mount it, and perform any other operation you would with
an accessible block device.

You will now probably want to continue with Chapter 6, Common administrative tasks [32],
which describes common administrative tasks to perform on your resource.

Configuring DRBD

30

5.6. Using�truck�based�replication
In order to preseed a remote node with data which is then to be kept synchronized, and to skip
the initial device synchronization, follow these steps.

This assumes that your local node has a configured, but disconnected DRBD resource in the
Primary role. That is to say, device configuration is completed, identical drbd.conf copies exist
on both nodes, and you have issued the commands for initial resource promotion [29] on your
local node — but the remote node is not connected yet.

• On the local node, issue the following command:

drbdadm new-current-uuid --clear-bitmap <resource>

• Create a consistent, verbatim copy of the resource’s data and its metadata. You may do so,
for example, by removing a hot-swappable drive from a RAID-1 mirror. You would, of course,
replace it with a fresh drive, and rebuild the RAID set, to ensure continued redundancy. But the
removed drive is a verbatim copy that can now be shipped off site. If your local block device
supports snapshot copies (such as when using DRBD on top of LVM), you may also create a
bitwise copy of that snapshot using dd.

• On the local node, issue:

drbdadm new-current-uuid <resource>

Note the absence of the --clear-bitmap option in this second invocation.

• Physically transport the copies to the remote peer location.

• Add the copies to the remote node. This may again be a matter of plugging a physical disk, or
grafting a bitwise copy of your shipped data onto existing storage on the remote node. Be sure
to restore or copy not only your replicated data, but also the associated DRBD metadata. If you
fail to do so, the disk shipping process is moot.

• Bring up the resource on the remote node:

drbdadm up resource

After the two peers connect, they will not initiate a full device synchronization. Instead, the
automatic synchronization that now commences only covers those blocks that changed since the
invocation of drbdadm --clear-bitmap new-current-uuid.

Even if there were no changes whatsoever since then, there may still be a brief synchronization
period due to areas covered by the Activity Log [106] being rolled back on the new Secondary.
This may be mitigated by the use of checksum-based synchronization [7].

You may use this same procedure regardless of whether the resource is a regular DRBD resource,
or a stacked resource. For stacked resources, simply add the -S or --stacked option to
drbdadm.

Part III. Working�with�DRBD

32

Chapter 6. Common�administrative
tasks

This chapter outlines typical administrative tasks encountered during day-to-day operations. It
does not cover troubleshooting tasks, these are covered in detail in Chapter 7, Troubleshooting
and error recovery [53].

6.1. Checking�DRBD�status

6.1.1. Retrieving�status�with�drbd-overview

The most convenient way to look at DRBD’s status is the drbd-overview utility.

drbd-overview
 0:home Connected Primary/Secondary
 UpToDate/UpToDate C r--- /home xfs 200G 158G 43G 79%
 1:data Connected Primary/Secondary
 UpToDate/UpToDate C r--- /mnt/ha1 ext3 9.9G 618M 8.8G 7%
 2:nfs-root Connected Primary/Secondary
 UpToDate/UpToDate C r--- /mnt/netboot ext3 79G 57G 19G 76%

6.1.2. Status�information�in�/proc/drbd

/proc/drbd is a virtual file displaying real-time status information about all DRBD resources
currently configured. You may interrogate this file’s contents using this command:

cat /proc/drbd
version: 8.3.0 (api:88/proto:86-89)
GIT-hash: 9ba8b93e24d842f0dd3fb1f9b90e8348ddb95829 build by buildsystem@linbit, 2008-12-18 16:02:26
 0: cs:Connected ro:Secondary/Secondary ds:UpToDate/UpToDate C r---
 ns:0 nr:8 dw:8 dr:0 al:0 bm:2 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:0
 1: cs:Connected ro:Secondary/Secondary ds:UpToDate/UpToDate C r---
 ns:0 nr:12 dw:12 dr:0 al:0 bm:1 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:0
 2: cs:Connected ro:Secondary/Secondary ds:UpToDate/UpToDate C r---
 ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:0

The first line, prefixed with version:, shows the DRBD version used on your system. The second
line contains information about this specific build.

The other lines in this example form a block that is repeated for every DRBD device configured,
prefixed by the device minor number. In this case, this is 0, corresponding to the device /dev/
drbd0.

The resource-specific output from /proc/drbd contains various pieces of information about
the resource:

cs (connection state). Status of the network connection. See Section 6.1.3, “Connection
states” [33]for details about the various connection states.

ro (roles). Roles of the nodes. The role of the local node is displayed first, followed by the
role of the partner node shown after the slash. See Section 6.1.4, “Resource roles” [34]for
details about the possible resource roles.

ds (disk states). State of the hard disks. Prior to the slash the state of the local node
is displayed, after the slash the state of the hard disk of the partner node is shown. See
Section 6.1.5, “Disk states” [34]for details about the various disk states.

Common administrative tasks

33

Replication protocol. Replication protocol used by the resource. Either A, B or C. See
Section 2.3, “Replication modes” [5] for details.

I/O Flags. Six state flags reflecting the I/O status of this resource. See Section 6.1.6, “I/O state
flags” [35] for a detailed explanation of these flags.

Performance indicators. A number of counters and gauges reflecting the resource’s utilization
and performance. See Section 6.1.7, “Performance indicators” [35] for details.

6.1.3. Connection�states

A resource’s connection state can be observed either by monitoring /proc/drbd, or by issuing
the drbdadm cstate command:

drbdadm cstate <resource>
Connected

A resource may have one of the following connection states:

StandAlone. No network configuration available. The resource has not yet been connected,
or has been administratively disconnected (using drbdadm disconnect), or has dropped its
connection due to failed authentication or split brain.

Disconnecting. Temporary state during disconnection. The next state is StandAlone.

Unconnected. Temporary state, prior to a connection attempt. Possible next states:
WFConnection and WFReportParams.

Timeout. Temporary state following a timeout in the communication with the peer. Next state:
Unconnected.

BrokenPipe. Temporary state after the connection to the peer was lost. Next state:
Unconnected.

NetworkFailure. Temporary state after the connection to the partner was lost. Next state:
Unconnected.

ProtocolError. Temporary state after the connection to the partner was lost. Next state:
Unconnected.

TearDown. Temporary state. The peer is closing the connection. Next state: Unconnected.

WFConnection. This node is waiting until the peer node becomes visible on the network.

WFReportParams. TCP connection has been established, this node waits for the first network
packet from the peer.

Connected. A DRBD connection has been established, data mirroring is now active. This is
the normal state.

StartingSyncS. Full synchronization, initiated by the administrator, is just starting. The next
possible states are: SyncSource or PausedSyncS.

StartingSyncT. Full synchronization, initiated by the administrator, is just starting. Next
state: WFSyncUUID.

WFBitMapS. Partial synchronization is just starting. Next possible states: SyncSource or
PausedSyncS.

WFBitMapT. Partial synchronization is just starting. Next possible state: WFSyncUUID.

WFSyncUUID. Synchronization is about to begin. Next possible states: SyncTarget or
PausedSyncT.

Common administrative tasks

34

SyncSource. Synchronization is currently running, with the local node being the source of
synchronization.

SyncTarget. Synchronization is currently running, with the local node being the target of
synchronization.

PausedSyncS. The local node is the source of an ongoing synchronization, but
synchronization is currently paused. This may be due to a dependency on the completion of
another synchronization process, or due to synchronization having been manually interrupted by
drbdadm pause-sync.

PausedSyncT. The local node is the target of an ongoing synchronization, but
synchronization is currently paused. This may be due to a dependency on the completion of
another synchronization process, or due to synchronization having been manually interrupted by
drbdadm pause-sync.

VerifyS. On-line device verification is currently running, with the local node being the source
of verification.

VerifyT. On-line device verification is currently running, with the local node being the target
of verification.

6.1.4. Resource�roles

A resource’s role can be observed either by monitoring /proc/drbd, or by issuing the drbdadm
role command:

`drbdadm role <resource>`
Primary/Secondary

The local resource role is always displayed first, the remote resource role last.

You may see one of the following resource roles:

Primary. The resource is currently in the primary role, and may be read from and written to.
This role only occurs on one of the two nodes, unless dual-primary mode [5] is enabled.

Secondary. The resource is currently in the secondary role. It normally receives updates from
its peer (unless running in disconnected mode), but may neither be read from nor written to. This
role may occur on one or both nodes.

Unknown. The resource’s role is currently unknown. The local resource role never has this
status. It is only displayed for the peer’s resource role, and only in disconnected mode.

6.1.5. Disk�states

A resource’s disk state can be observed either by monitoring /proc/drbd, or by issuing the
drbdadm dstate command:

drbdadm dstate <resource>
UpToDate/UpToDate

The local disk state is always displayed first, the remote disk state last.

Both the local and the remote disk state may be one of the following:

Diskless. No local block device has been assigned to the DRBD driver. This may mean that
the resource has never attached to its backing device, that it has been manually detached using
drbdadm detach, or that it automatically detached after a lower-level I/O error.

Attaching. Transient state while reading meta data.

Common administrative tasks

35

Failed. Transient state following an I/O failure report by the local block device. Next state:
Diskless.

Negotiating. Transient state when an Attach is carried out on an already-Connected
DRBD device.

Inconsistent. The data is inconsistent. This status occurs immediately upon creation of a
new resource, on both nodes (before the initial full sync). Also, this status is found in one node
(the synchronization target) during synchronization.

Outdated. Resource data is consistent, but outdated [10].

DUnknown. This state is used for the peer disk if no network connection is available.

Consistent. Consistent data of a node without connection. When the connection is
established, it is decided whether the data is UpToDate or Outdated.

UpToDate. Consistent, up-to-date state of the data. This is the normal state.

6.1.6. I/O�state�flags

The I/O state flag field in /proc/drbd contains information about the current state of I/O
operations associated with the resource. There are six such flags in total, with the following
possible values:

1. I/O suspension. Either r for running or s for suspended I/O. Normally r.

2. Serial resynchronization. When a resource is awaiting resynchronization, but has deferred this
because of a resync-after dependency, this flag becomes a. Normally -.

3. Peer-initiated sync suspension. When resource is awaiting resynchronization, but the peer
node has suspended it for any reason, this flag becomes p. Normally -.

4. Locally initiated sync suspension. When resource is awaiting resynchronization, but a user on
the local node has suspended it, this flag becomes u. Normally -.

5. Locally blocked I/O. Normally -. May be one of the following flags:

• d: I/O blocked for a reason internal to DRBD, such as a transient disk state.

• b: Backing device I/O is blocking.

• n: Congestion on the network socket.

• a: Simultaneous combination of blocking device I/O and network congestion.

6. Activity Log update suspension. When updates to the Activity Log are suspended, this flag
becomes s. Normally -.

6.1.7. Performance�indicators

The second line of /proc/drbd information for each resource contains the following counters
and gauges:

ns (network send). Volume of net data sent to the partner via the network connection; in
Kibyte.

nr (network receive). Volume of net data received by the partner via the network connection;
in Kibyte.

dw (disk write). Net data written on local hard disk; in Kibyte.

Common administrative tasks

36

dr (disk read). Net data read from local hard disk; in Kibyte.

al (activity log). Number of updates of the activity log area of the meta data.

bm (bit map). Number of updates of the bitmap area of the meta data.

lo (local count). Number of open requests to the local I/O sub-system issued by DRBD.

pe (pending). Number of requests sent to the partner, but that have not yet been answered
by the latter.

ua (unacknowledged). Number of requests received by the partner via the network
connection, but that have not yet been answered.

ap (application pending). Number of block I/O requests forwarded to DRBD, but not yet
answered by DRBD.

ep (epochs). Number of epoch objects. Usually 1. Might increase under I/O load when using
either the barrier or the none write ordering method.

wo (write order). Currently used write ordering method: b(barrier), f(flush), d(drain) or
n(none).

oos (out of sync). Amount of storage currently out of sync; in Kibibytes.

6.2. Enabling�and�disabling�resources

6.2.1. Enabling�resources

Normally, all configured DRBD resources are automatically enabled

• by a cluster resource management application at its discretion, based on your cluster
configuration, or

• by the /etc/init.d/drbd init script on system startup.

If, however, you need to enable resources manually for any reason, you may do so by issuing the
command

drbdadm up <resource>

As always, you may use the keyword all instead of a specific resource name if you want to
enable all resources configured in /etc/drbd.conf at once.

6.2.2. Disabling�resources

You may temporarily disable specific resources by issuing the command

drbdadm down <resource>

Here, too, you may use the keyword all in place of a resource name if you wish to temporarily
disable all resources listed in /etc/drbd.conf at once.

6.3. Reconfiguring�resources
DRBD allows you to reconfigure resources while they are operational. To that end,

• make any necessary changes to the resource configuration in /etc/drbd.conf,

Common administrative tasks

37

• synchronize your /etc/drbd.conf file between both nodes,

• issue the drbdadm adjust <resource> command on both nodes.

drbdadm adjust then hands off to drbdsetup to make the necessary adjustments to the
configuration. As always, you are able to review the pending drbdsetup invocations by running
drbdadm with the -d (dry-run) option.

Note

When making changes to the common section in /etc/drbd.conf, you can adjust
the configuration for all resources in one run, by issuing drbdadm adjust all.

6.4. Promoting�and�demoting�resources
Manually switching a resource’s role [3] from secondary to primary (promotion) or vice versa
(demotion) is done using the following commands:

drbdadm primary <resource>
drbdadm secondary <resource>

In single-primary mode [5] (DRBD’s default), any resource can be in the primary role on only one
node at any given time while the connection state [33] is Connected. Thus, issuing drbdadm
primary <resource> on one node while <resource> is still in the primary role on the peer
will result in an error.

A resource configured to allow dual-primary mode [5] can be switched to the primary role on
both nodes.

6.5. Enabling�dual-primary�mode
Dual-primary mode allows a resource to assume the primary role simultaneously on both nodes.
Doing so is possible on either a permanent or a temporary basis.

Note

Dual-primary mode requires that the resource is configured to replicate
synchronously (protocol C).

6.5.1. Permanent�dual-primary�mode

To enable dual-primary mode, set the allow-two-primaries option to yes in the net
section of your resource configuration:

resource <resource>
 net {
 protocol C;
 allow-two-primaries yes;
 }
 ...
}

After that, do not forget to synchronize the configuration between nodes. Run drbdadm
adjust <resource> on both nodes.

You can now change both nodes to role primary at the same time with drbdadm primary
<resource>.

Common administrative tasks

38

6.5.2. Temporary�dual-primary�mode

To temporarily enable dual-primary mode for a resource normally running in a single-primary
configuration, issue the following command:

drbdadm net-options --protocol=C --allow-two-primaries <resource>

To end temporary dual-primary mode, run the same command as above but with --allow-
two-primaries=no (and your desired replication protocol, if applicable).

6.5.3. Automating�promotion�on�system�startup

When a resource is configured to support dual-primary mode, it may also be desirable to
automatically switch the resource into the primary role upon system (or DRBD) startup.

resource <resource>
 startup {
 become-primary-on both;
 }
 ...
}

The /etc/init.d/drbd system init script parses this option on startup and promotes
resources accordingly.

Note

The become-primary-on approach is not required, nor recommended, in
Pacemaker-managed [58] DRBD configurations. In Pacemaker configuration,
resource promotion and demotion should always be handled by the cluster manager.

6.6. Using�on-line�device�verification

6.6.1. Enabling�on-line�verification

On-line device verification [7] is not enabled for resources by default. To enable it, add the
following lines to your resource configuration in /etc/drbd.conf:

resource <resource>
 net {
 verify-alg <algorithm>;
 }
 ...
}

<algorithm> may be any message digest algorithm supported by the kernel crypto API in your
system’s kernel configuration. Normally, you should be able to choose at least from sha1, md5,
and crc32c.

If you make this change to an existing resource, as always, synchronize your drbd.conf to the
peer, and run drbdadm adjust <resource> on both nodes.

6.6.2. Invoking�on-line�verification

After you have enabled on-line verification, you will be able to initiate a verification run using the
following command:

Common administrative tasks

39

drbdadm verify <resource>

When you do so, DRBD starts an online verification run for <resource>, and if it detects any blocks
not in sync, will mark those blocks as such and write a message to the kernel log. Any applications
using the device at that time can continue to do so unimpeded, and you may also switch resource
roles [37] at will.

If out-of-sync blocks were detected during the verification run, you may resynchronize them
using the following commands after verification has completed:

drbdadm disconnect <resource>
drbdadm connect <resource>

6.6.3. Automating�on-line�verification

Most users will want to automate on-line device verification. This can be easily accomplished.
Create a file with the following contents, named /etc/cron.d/drbd-verify on one of your
nodes:

42 0 * * 0 root /sbin/drbdadm verify <resource>

This will have cron invoke a device verification every Sunday at 42 minutes past midnight.

If you have enabled on-line verification for all your resources (for example, by adding verify-
alg <algorithm> to the common section in /etc/drbd.conf), you may also use:

42 0 * * 0 root /sbin/drbdadm verify all

6.7. Configuring�the�rate�of�synchronization
Normally, one tries to ensure that background synchronization (which makes the data on the
synchronization target temporarily inconsistent) completes as quickly as possible. However, it
is also necessary to keep background synchronization from hogging all bandwidth otherwise
available for foreground replication, which would be detrimental to application performance.
Thus, you must configure the sychronization bandwidth to match your hardware — which you
may do in a permanent fashion or on-the-fly.

Important

It does not make sense to set a synchronization rate that is higher than the maximum
write throughput on your secondary node. You must not expect your secondary
node to miraculously be able to write faster than its I/O subsystem allows, just
because it happens to be the target of an ongoing device synchronization.

Likewise, and for the same reasons, it does not make sense to set a synchronization rate that is
higher than the bandwidth available on the replication network.

6.7.1. Permanent�fixed�sync�rate�configuration

The maximum bandwidth a resource uses for background re-synchronization is determined by the
rate option for a resource. This must be included in the resource configuration’s disk section
in /etc/drbd.conf:

resource <resource>
 disk {
 sync-rate 40M;
 ...
 }
 ...

Common administrative tasks

40

}

Note that the rate setting is given in bytes, not bits per second.

Tip

A good rule of thumb for this value is to use about 30% of the available replication
bandwidth. Thus, if you had an I/O subsystem capable of sustaining write throughput
of 180MB/s, and a Gigabit Ethernet network capable of sustaining 110 MB/s
network throughput (the network being the bottleneck), you would calculate:

Figure 6.1. Syncer rate example, 110MB/s effective available bandwidth

110 £ 0:3 = 33 MB=s
Thus, the recommended value for the rate option would be 33M.

By contrast, if you had an I/O subsystem with a maximum throughput of 80MB/s and a Gigabit
Ethernet connection (the I/O subsystem being the bottleneck), you would calculate:

Figure 6.2. Syncer rate example, 80MB/s effective available bandwidth

80 £ 0:3 = 24 MB=s
In this case, the recommended value for the rate option would be 24M.

6.7.2. Temporary�fixed�sync�rate�configuration

It is sometimes desirable to temporarily adjust the sync rate. For example, you might want to
speed up background re-synchronization after having performed scheduled maintenance on one
of your cluster nodes. Or, you might want to throttle background re-synchronization if it happens
to occur at a time when your application is extremely busy with write operations, and you want
to make sure that a large portion of the existing bandwidth is available to replication.

For example, in order to make most bandwidth of a Gigabit Ethernet link available to re-
synchronization, issue the following command:

drbdadm disk-options --resync-rate=110M <resource>

You need to issue this command on only one of the nodes.

To revert this temporary setting and re-enable the synchronization rate set in /etc/
drbd.conf, issue this command:

drbdadm adjust <resource>

6.7.3. Variable�sync�rate�configuration

Specifically in configurations where multiple DRBD resources share a single replication/
synchronization network, fixed-rate synchronization may not be an optimal approach. In this
case, you should configure variable-rate synchronization. In this mode, DRBD uses an automated
control loop algorithm to determine, and permanently adjust, the synchronization rate. This
algorithm ensures that there is always sufficient bandwidth available for foreground replication,
greatly mitigating the impact that background synchronization has on foreground I/O.

The optimal configuration for variable-rate synchronization may vary greatly depending on the
available network bandwidth, application I/O pattern and link congestion. Ideal configuration
settings also depend on whether DRBD Proxy [11] is in use or not. It may be wise to

Common administrative tasks

41

engage professional consultancy in order to optimally configure this DRBD feature. An example
configuration (which assumes a deployment in conjunction with DRBD Proxy) is provided below:

resource <resource> {
 net {
 c-plan-ahead 200;
 c-max-rate 10M;
 c-fill-target 15M;
 }
}

Tip

A good starting value for c-fill-target is BDP×3, where BDP is your bandwidth
delay product on the replication link.

6.8. Configuring�checksum-based
synchronization

Checksum-based synchronization [7] is not enabled for resources by default. To enable it, add
the following lines to your resource configuration in /etc/drbd.conf:

resource <resource>
 net {
 csums-alg <algorithm>;
 }
 ...
}

<algorithm> may be any message digest algorithm supported by the kernel crypto API in your
system’s kernel configuration. Normally, you should be able to choose at least from sha1, md5,
and crc32c.

If you make this change to an existing resource, as always, synchronize your drbd.conf to the
peer, and run drbdadm adjust <resource> on both nodes.

6.9. Configuring�congestion�policies�and
suspended�replication

In an environment where the replication bandwidth is highly variable (as would be typical in
WAN replication setups), the replication link may occasionally become congested. In a default
configuration, this would cause I/O on the primary node to block, which is sometimes undesirable.

Instead, you may configure DRBD to suspend the ongoing replication in this case, causing the
Primary’s data set to pull ahead of the Secondary. In this mode, DRBD keeps the replication channel
open — it never switches to disconnected mode — but does not actually replicate until sufficient
bandwith becomes available again.

The following example is for a DRBD Proxy configuration:

resource <resource> {
 net {
 on-congestion pull-ahead;
 congestion-fill 2G;
 congestion-extents 2000;
 ...

Common administrative tasks

42

 }
 ...
}

It is usually wise to set both congestion-fill and congestion-extents together with
the pull-ahead option.

A good value for congestion-fill is 90%

• of the allocated DRBD proxy buffer memory, when replicating over DRBD Proxy, or

• of the TCP network send buffer, in non-DRBD Proxy setups.

A good value for congestion-extents is 90% of your configured al-extents for the
affected resources.

6.10. Configuring�I/O�error�handling�strategies
DRBD’s strategy for handling lower-level I/O errors [10] is determined by the on-io-error
option, included in the resource disk configuration in /etc/drbd.conf:

resource <resource> {
 disk {
 on-io-error <strategy>;
 ...
 }
 ...
}

You may, of course, set this in the common section too, if you want to define a global I/O error
handling policy for all resources.

<strategy> may be one of the following options:

1. detach This is the default and recommended option. On the occurrence of a lower-level I/O
error, the node drops its backing device, and continues in diskless mode.

2. pass_on This causes DRBD to report the I/O error to the upper layers. On the primary node,
it is reported to the mounted file system. On the secondary node, it is ignored (because the
secondary has no upper layer to report to).

3. call-local-io-error Invokes the command defined as the local I/
O error handler. This requires that a corresponding +local-io-
error command invocation is defined in the resource’s handlers section. It is entirely left to
the administrator’s discretion to implement I/O error handling using the command (or script)
invoked by local-io-error.

Note

Early DRBD versions (prior to 8.0) included another option, panic, which would
forcibly remove the node from the cluster by way of a kernel panic, whenever a
local I/O error occurred. While that option is no longer available, the same behavior
may be mimicked via the local-io-error/+ call-local-io-error+ interface. You
should do so only if you fully understand the implications of such behavior.

You may reconfigure a running resource’s I/O error handling strategy by following this process:

• Edit the resource configuration in /etc/drbd.d/<resource>.res.

• Copy the configuration to the peer node.

Common administrative tasks

43

• Issue drbdadm adjust <resource> on both nodes.

6.11. Configuring�replication�traffic�integrity
checking

Replication traffic integrity checking [8] is not enabled for resources by default. To enable it, add
the following lines to your resource configuration in /etc/drbd.conf:

resource <resource>
 net {
 data-integrity-alg <algorithm>;
 }
 ...
}

<algorithm> may be any message digest algorithm supported by the kernel crypto API in your
system’s kernel configuration. Normally, you should be able to choose at least from sha1, md5,
and crc32c.

If you make this change to an existing resource, as always, synchronize your drbd.conf to the
peer, and run drbdadm adjust <resource> on both nodes.

6.12. Resizing�resources

6.12.1. Growing�on-line

If the backing block devices can be grown while in operation (online), it is also possible to increase
the size of a DRBD device based on these devices during operation. To do so, two criteria must
be fulfilled:

1. The affected resource’s backing device must be one managed by a logical volume management
subsystem, such as LVM.

2. The resource must currently be in the Connected connection state.

Having grown the backing block devices on both nodes, ensure that only one node is in primary
state. Then enter on one node:

drbdadm resize <resource>

This triggers a synchronization of the new section. The synchronization is done from the primary
node to the secondary node.

6.12.2. Growing�off-line

When the backing block devices on both nodes are grown while DRBD is inactive, and the DRBD
resource is using external meta data [102], then the new size is recognized automatically. No
administrative intervention is necessary. The DRBD device will have the new size after the next
activation of DRBD on both nodes and a successful establishment of a network connection.

If however the DRBD resource is configured to use internal meta data [101], then this meta
data must be moved to the end of the grown device before the new size becomes available. To
do so, complete the following steps:

Warning

This is an advanced procedure. Use at your own discretion.

Common administrative tasks

44

• Unconfigure your DRBD resource:

drbdadm down <resource>

• Save the meta data in a text file prior to shrinking:

drbdadm dump-md <resource> > /tmp/metadata

You must do this on both nodes, using a separate dump file for every node. Do not dump the meta
data on one node, and simply copy the dump file to the peer. This will not work.

• Grow the backing block device on both nodes.

• Adjust the size information (la-size-sect) in the file /tmp/metadata accordingly, on
both nodes. Remember that la-size-sect must be specified in sectors.

• Re-initialize the metadata area:

drbdadm create-md <resource>

• Re-import the corrected meta data, on both nodes:

drbdmeta_cmd=$(drbdadm -d dump-md test-disk)
${drbdmeta_cmd/dump-md/restore-md} /tmp/metadata
Valid meta-data in place, overwrite? [need to type 'yes' to confirm]
yes
Successfully restored meta data

Note

This example uses bash parameter substitution. It may or may not work in other
shells. Check your SHELL environment variable if you are unsure which shell you are
currently using.

• Re-enable your DRBD resource:

drbdadm up <resource>

• On one node, promote the DRBD resource:

drbdadm primary <resource>

• Finally, grow the file system so it fills the extended size of the DRBD device.

6.12.3. Shrinking�on-line

Before shrinking a DRBD device, you must shrink the layers above DRBD, i.e. usually the file
system. Since DRBD cannot ask the file system how much space it actually uses, you have to be
careful in order not to cause data loss.

Note

Whether or not the filesystem can be shrunk on-line depends on the filesystem
being used. Most filesystems do not support on-line shrinking. XFS does not support
shrinking at all.

When using internal meta data, make sure to consider the space required by the meta data. The
size communicated to drbdadm resize is the net size for the file system. In the case of internal
meta data, the gross size required by DRBD is higher (see also Section 17.1.3, “Estimating meta
data size” [102]).

Common administrative tasks

45

To shrink DRBD on-line, issue the following command after you have shrunk the file system
residing on top of it:

drbdadm resize --size=<new-size> <resource>

You may use the usual multiplier suffixes for <new-size> (K, M, G etc.). After you have shrunk
DRBD, you may also shrink the containing block device (if it supports shrinking).

6.12.4. Shrinking�off-line

If you were to shrink a backing block device while DRBD is inactive, DRBD would refuse to attach
to this block device during the next attach attempt, since it is now too small (in case external
meta data is used), or it would be unable to find its meta data (in case internal meta data is used).
To work around these issues, use this procedure (if you cannot use on-line shrinking [44]):

Warning

This is an advanced procedure. Use at your own discretion.

• Shrink the file system from one node, while DRBD is still configured.

• Unconfigure your DRBD resource:

drbdadm down <resource>

• Save the meta data in a text file prior to shrinking:

drbdadm dump-md <resource> > +/tmp/metadata+

You must do this on both nodes, using a separate dump file for every node. Do not dump the meta
data on one node, and simply copy the dump file to the peer. This will not work.

• Shrink the backing block device on both nodes.

• Adjust the size information (la-size-sect) in the file /tmp/metadata accordingly, on
both nodes. Remember that la-size-sect must be specified in sectors.

• Only if you are using internal metadata (which at this time have probably been lost due to the
shrinking process), re-initialize the metadata area:

drbdadm create-md <resource>

• Re-import the corrected meta data, on both nodes:

drbdmeta_cmd=$(drbdadm -d dump-md test-disk)
${drbdmeta_cmd/dump-md/restore-md} /tmp/metadata
Valid meta-data in place, overwrite? [need to type 'yes' to confirm]
yes
Successfully restored meta data

Note

This example uses bash parameter substitution. It may or may not work in other
shells. Check your SHELL environment variable if you are unsure which shell you are
currently using.

• Re-enable your DRBD resource:

drbdadm up <resource>

Common administrative tasks

46

6.13. Disabling�backing�device�flushes

Caution

You should only disable device flushes when running DRBD on devices with
a battery-backed write cache (BBWC). Most storage controllers allow to
automatically disable the write cache when the battery is depleted, switching to
write-through mode when the battery dies. It is strongly recommended to enable
such a feature.

Disabling DRBD’s flushes when running without BBWC, or on BBWC with a depleted battery, is
likely to cause data loss and should not be attempted.

DRBD allows you to enable and disable backing device flushes [9] separately for the replicated
data set and DRBD’s own meta data. Both of these options are enabled by default. If you wish
to disable either (or both), you would set this in the disk section for the DRBD configuration
file, /etc/drbd.conf.

To disable disk flushes for the replicated data set, include the following line in your configuration:

resource <resource>
 disk {
 disk-flushes no;
 ...
 }
 ...
}

To disable disk flushes on DRBD’s meta data, include the following line:

resource <resource>
 disk {
 md-flushes no;
 ...
 }
 ...
}

After you have modified your resource configuration (and synchronized your /etc/drbd.conf
between nodes, of course), you may enable these settings by issuing this command on both
nodes:

drbdadm adjust <resource>

6.14. Configuring�split�brain�behavior

6.14.1. Split�brain�notification

DRBD invokes the split-brain handler, if configured, at any time split brain is detected. To
configure this handler, add the following item to your resource configuration:

resource <resource>
 handlers {
 split-brain <handler>;
 ...
 }
 ...
}

Common administrative tasks

47

<handler> may be any executable present on the system.

The DRBD distribution contains a split brain handler script that installs as /usr/lib/drbd/
notify-split-brain.sh. It simply sends a notification e-mail message to a specified
address. To configure the handler to send a message to root@localhost (which is expected
to be an email address that forwards the notification to a real system administrator), configure
the +split-brain handler+as follows:

resource <resource>
 handlers {
 split-brain "/usr/lib/drbd/notify-split-brain.sh root";
 ...
 }
 ...
}

After you have made this modification on a running resource (and synchronized the configuration
file between nodes), no additional intervention is needed to enable the handler. DRBD will simply
invoke the newly-configured handler on the next occurrence of split brain.

6.14.2. Automatic�split�brain�recovery�policies

In order to be able to enable and configure DRBD’s automatic split brain recovery policies, you
must understand that DRBD offers several configuration options for this purpose. DRBD applies
its split brain recovery procedures based on the number of nodes in the Primary role at the time
the split brain is detected. To that end, DRBD examines the following keywords, all found in the
resource’s net configuration section:

after-sb-0pri. Split brain has just been detected, but at this time the resource is not in the
Primary role on any host. For this option, DRBD understands the following keywords:

• disconnect: Do not recover automatically, simply invoke the split-brain handler script
(if configured), drop the connection and continue in disconnected mode.

• discard-younger-primary: Discard and roll back the modifications made on the host
which assumed the Primary role last.

• discard-least-changes: Discard and roll back the modifications on the host where fewer
changes occurred.

• discard-zero-changes: If there is any host on which no changes occurred at all, simply
apply all modifications made on the other and continue.

after-sb-1pri. Split brain has just been detected, and at this time the resource is in the
Primary role on one host. For this option, DRBD understands the following keywords:

• disconnect: As with after-sb-0pri, simply invoke the split-brain handler script (if
configured), drop the connection and continue in disconnected mode.

• consensus: Apply the same recovery policies as specified in after-sb-0pri. If a split brain
victim can be selected after applying these policies, automatically resolve. Otherwise, behave
exactly as if disconnect were specified.

• call-pri-lost-after-sb: Apply the recovery policies as specified in after-sb-0pri.
If a split brain victim can be selected after applying these policies, invoke the pri-lost-
after-sb handler on the victim node. This handler must be configured in the handlers
section and is expected to forcibly remove the node from the cluster.

• discard-secondary: Whichever host is currently in the Secondary role, make that host the
split brain victim.

Common administrative tasks

48

after-sb-2pri. Split brain has just been detected, and at this time the resource is in the
Primary role on both hosts. This option accepts the same keywords as after-sb-1pri except
discard-secondary and consensus.

Note

DRBD understands additional keywords for these three options, which have been
omitted here because they are very rarely used. Refer to drbd.conf(5) [119] for
details on split brain recovery keywords not discussed here.

For example, a resource which serves as the block device for a GFS or OCFS2 file system in dual-
Primary mode may have its recovery policy defined as follows:

resource <resource> {
 handlers {
 split-brain "/usr/lib/drbd/notify-split-brain.sh root"
 ...
 }
 net {
 after-sb-0pri discard-zero-changes;
 after-sb-1pri discard-secondary;
 after-sb-2pri disconnect;
 ...
 }
 ...
}

6.15. Creating�a�three-node�setup
A three-node setup involves one DRBD device stacked atop another.

6.15.1. Device�stacking�considerations

The following considerations apply to this type of setup:

• The stacked device is the active one. Assume you have configured one DRBD device /dev/
drbd0, and the stacked device atop it is /dev/drbd10, then /dev/drbd10 will be the
device that you mount and use.

• Device meta data will be stored twice, on the underlying DRBD device and the stacked DRBD
device. On the stacked device, you must always use internal meta data [101]. This means
that the effectively available storage area on a stacked device is slightly smaller, compared to
an unstacked device.

• To get the stacked upper level device running, the underlying device must be in the primary role.

• To be able to synchronize the backup node, the stacked device on the active node must be up
and in the primary role.

6.15.2. Configuring�a�stacked�resource

In the following example, nodes are named alice, bob, and charlie, with alice and bob
forming a two-node cluster, and charlie being the backup node.

resource r0 {
 net {
 protocol C;

Common administrative tasks

49

 }

 on alice {
 device /dev/drbd0;
 disk /dev/sda6;
 address 10.0.0.1:7788;
 meta-disk internal;
 }

 on bob {
 device /dev/drbd0;
 disk /dev/sda6;
 address 10.0.0.2:7788;
 meta-disk internal;
 }
}

resource r0-U {
 net {
 protocol A;
 }

 stacked-on-top-of r0 {
 device /dev/drbd10;
 address 192.168.42.1:7788;
 }

 on charlie {
 device /dev/drbd10;
 disk /dev/hda6;
 address 192.168.42.2:7788; # Public IP of the backup node
 meta-disk internal;
 }
}

As with any drbd.conf configuration file, this must be distributed across all nodes in the
cluster — in this case, three nodes. Notice the following extra keyword not found in an unstacked
resource configuration:

stacked-on-top-of. This option informs DRBD that the resource which contains it is a
stacked resource. It replaces one of the on sections normally found in any resource configuration.
Do not use stacked-on-top-of in an lower-level resource.

Note

It is not a requirement to use Protocol A [5] for stacked resources. You may select
any of DRBD’s replication protocols depending on your application.

6.15.3. Enabling�stacked�resources

To enable a stacked resource, you first enable its lower-level resource and promote it:

drbdadm up r0
drbdadm primary r0

As with unstacked resources, you must create DRBD meta data on the stacked resources. This is
done using the following command:

drbdadm create-md --stacked r0-U

Common administrative tasks

50

Then, you may enable the stacked resource:

drbdadm up --stacked r0-U
drbdadm primary --stacked r0-U

After this, you may bring up the resource on the backup node, enabling three-node replication:

drbdadm create-md r0-U
drbdadm up r0-U

In order to automate stacked resource management, you may integrate stacked resources in your
cluster manager configuration. See Section 8.4, “Using stacked DRBD resources in Pacemaker
clusters” [61] for information on doing this in a cluster managed by the Pacemaker cluster
management framework.

6.16. Using�DRBD�Proxy

6.16.1. DRBD�Proxy�deployment�considerations

The DRBD Proxy [11] processes can either be located directly on the machines where DRBD is
set up, or they can be placed on distinct dedicated servers. A DRBD Proxy instance can serve as
a proxy for multiple DRBD devices distributed across multiple nodes.

DRBD Proxy is completely transparent to DRBD. Typically you will expect a high number of data
packets in flight, therefore the activity log should be reasonably large. Since this may cause longer
re-sync runs after the crash of a primary node, it is recommended to enable DRBD’s csums-
alg setting.

6.16.2. Installation

To obtain DRBD Proxy, please contact your Linbit sales representative. Unless instructed
otherwise, please always use the most recent DRBD Proxy release.

To install DRBD Proxy on Debian and Debian-based systems, use the dpkg tool as follows (replace
version with your DRBD Proxy version, and architecture with your target architecture):

dpkg -i drbd-proxy_1.0.16_i386.deb

To install DRBD Proxy on RPM based systems (like SLES or RHEL) use the rpm tool as follows
(replace version with your DRBD Proxy version, and architecture with your target architecture):

rpm -i drbd-proxy-1.0.16-1.i386.rpm

Also install the DRBD administration program drbdadm since it is required to configure DRBD
Proxy.

This will install the DRBD proxy binaries as well as an init script which usually goes into /etc/
init.d. Please always use the init script to start/stop DRBD proxy since it also configures DRBD
Proxy using the drbdadm tool.

6.16.3. License�file

When obtaining a license from Linbit, you will be sent a DRBD Proxy license file which is required
to run DRBD Proxy. The file is called drbd-proxy.license and must be copied into the /etc
directory of the target machines.

cp drbd-proxy.license /etc

Common administrative tasks

51

6.16.4. Configuration

DRBD Proxy is configured in DRBD’s main configuration file. It is configured by an additional
options section called proxy and additional proxy on sections within the host sections.

Below is a DRBD configuration example for proxies running directly on the DRBD nodes:

resource r0 {
 net {
 protocol A;
 }
 device minor 0;
 disk /dev/sdb1;
 meta-disk /dev/sdb2;

 proxy {
 compression on;
 memlimit 100M;
 }

 on alice {
 address 127.0.0.1:7789;
 proxy on alice {
 inside 127.0.0.1:7788;
 outside 192.168.23.1:7788;
 }
 }

 on bob {
 address 127.0.0.1:7789;
 proxy on bob {
 inside 127.0.0.1:7788;
 outside 192.168.23.2:7788;
 }
 }
}

The inside IP address is used for communication between DRBD and the DRBD Proxy, whereas
the outside IP address is used for communication between the proxies.

6.16.5. Controlling�DRBD�Proxy

drbdadm offers the proxy-up and proxy-down subcommands to configure or delete the
connection to the local DRBD Proxy process of the named DRBD resource(s). These commands
are used by the start and stop actions which /etc/init.d/drbdproxy implements.

The DRBD Proxy has a low level configuration tool, called drbd-proxy-ctl. When called
without any option it operates in interactive mode. The available commands are displayed by the
help command.

add connection <name> <ip-listen1>:<port> <ip-connect1>:<port>
 <ip-listen2>:<port> <ip-connect2>:<port>
 Creates a communication path between two DRBD instances.

set memlimit <name> <memlimit-in-bytes>
 Sets memlimit for connection <name>

del connection <name>

Common administrative tasks

52

 Deletes communication path named name.

show
 Shows currently configured communication paths.

show memusage
 Shows memory usage of each connection.

list [h]subconnections
 Shows currently established individual connections
 together with some stats. With h outputs bytes in human
 readable format.

list [h]connections
 Shows currently configured connections and their states
 With h outputs bytes in human readable format.

list details
 Shows currently established individual connections with
 counters for each DRBD packet type.

quit
 Exits the client program (closes control connection).

shutdown
 Shuts down the drbd-proxy program. Attention: this
 unconditionally terminates any DRBD connections running.

6.16.6. Troubleshooting

DRBD proxy logs via syslog using the LOG_DAEMON facility. Usually you will find DRBD Proxy
messages in /var/log/daemon.log.

For example, if proxy fails to connect it will log something like Rejecting connection
because I can’t connect on the other side. In that case, please check if DRBD
is running (not in StandAlone mode) on both nodes and if both proxies are running. Also double-
check your configuration.

53

Chapter 7. Troubleshooting�and�error
recovery

This chapter describes tasks to be performed in the event of hardware or system failures.

7.1. Dealing�with�hard�drive�failure
How to deal with hard drive failure depends on the way DRBD is configured to handle disk I/O
errors (see Section 2.11, “Disk error handling strategies” [10]), and on the type of meta data
configured (see Section 17.1, “DRBD meta data” [101]).

Note

For the most part, the steps described here apply only if you run DRBD directly on
top of physical hard drives. They generally do not apply in case you are running DRBD
layered on top of

• an MD software RAID set (in this case, use mdadm to manage drive replacement),

• device-mapper RAID (use dmraid),

• a hardware RAID appliance (follow the vendor’s instructions on how to deal with failed drives),

• some non-standard device-mapper virtual block devices (see the device mapper
documentation).

7.1.1. Manually�detaching�DRBD�from�your�hard�drive

If DRBD is configured to pass on I/O errors [10] (not recommended), you must first detach the
DRBD resource, that is, disassociate it from its backing storage:

drbdadm detach <resource>

By running the drbdadm dstate command, you will now be able to verify that the resource
is now in diskless mode:

drbdadm dstate <resource>
Diskless/UpToDate

If the disk failure has occured on your primary node, you may combine this step with a switch-
over operation.

7.1.2. Automatic�detach�on�I/O�error

If DRBD is configured to automatically detach upon I/O error [10] (the recommended option),
DRBD should have automatically detached the resource from its backing storage already, without
manual intervention. You may still use the drbdadm dstate command to verify that the
resource is in fact running in diskless mode.

7.1.3. Replacing�a�failed�disk�when�using�internal�meta
data

If using internal meta data [101], it is sufficient to bind the DRBD device to the new hard disk.
If the new hard disk has to be addressed by another Linux device name than the defective disk,
this has to be modified accordingly in the DRBD configuration file.

Troubleshooting and error recovery

54

This process involves creating a new meta data set, then re-attaching the resource:

drbdadm create-md <resource>
v08 Magic number not found
Writing meta data...
initialising activity log
NOT initializing bitmap
New drbd meta data block sucessfully created.

drbdadm attach <resource>

Full synchronization of the new hard disk starts instantaneously and automatically. You will
be able to monitor the synchronization’s progress via /proc/drbd, as with any background
synchronization.

7.1.4. Replacing�a�failed�disk�when�using�external�meta
data

When using external meta data [102], the procedure is basically the same. However, DRBD is
not able to recognize independently that the hard drive was swapped, thus an additional step is
required.

drbdadm create-md <resource>
v08 Magic number not found
Writing meta data...
initialising activity log
NOT initializing bitmap
New drbd meta data block sucessfully created.

drbdadm attach <resource>
drbdadm invalidate <resource>

Here, the drbdadm invalidate command triggers synchronization. Again, sync progress may
be observed via /proc/drbd.

7.2. Dealing�with�node�failure
When DRBD detects that its peer node is down (either by true hardware failure or manual
intervention), DRBD changes its connection state from Connected to WFConnection and
waits for the peer node to re-appear. The DRBD resource is then said to operate in disconnected
mode. In disconnected mode, the resource and its associated block device are fully usable, and
may be promoted and demoted as necessary, but no block modifications are being replicated to
the peer node. Instead, DRBD stores internal information on which blocks are being modified while
disconnected.

7.2.1. Dealing�with�temporary�secondary�node�failure
If a node that currently has a resource in the secondary role fails temporarily (due to, for example,
a memory problem that is subsequently rectified by replacing RAM), no further intervention is
necessary — besides the obvious necessity to repair the failed node and bring it back on line.
When that happens, the two nodes will simply re-establish connectivity upon system start-up.
After this, DRBD replicates all modifications made on the primary node in the meantime, to the
secondary node.

Important

At this point, due to the nature of DRBD’s re-synchronization algorithm, the resource
is briefly inconsistent on the secondary node. During that short time window, the

Troubleshooting and error recovery

55

secondary node can not switch to the Primary role if the peer is unavailable. Thus,
the period in which your cluster is not redundant consists of the actual secondary
node down time, plus the subsequent re-synchronization.

7.2.2. Dealing�with�temporary�primary�node�failure

From DRBD’s standpoint, failure of the primary node is almost identical to a failure of the
secondary node. The surviving node detects the peer node’s failure, and switches to disconnected
mode. DRBD does not promote the surviving node to the primary role; it is the cluster
management application’s responsibility to do so.

When the failed node is repaired and returns to the cluster, it does so in the secondary role, thus,
as outlined in the previous section, no further manual intervention is necessary. Again, DRBD does
not change the resource role back, it is up to the cluster manager to do so (if so configured).

DRBD ensures block device consistency in case of a primary node failure by way of a special
mechanism. For a detailed discussion, refer to Section 17.3, “The Activity Log” [106].

7.2.3. Dealing�with�permanent�node�failure

If a node suffers an unrecoverable problem or permanent destruction, you must follow the
following steps:

• Replace the failed hardware with one with similar performance and disk capacity.

Note

Replacing a failed node with one with worse performance characteristics is possible,
but not recommended. Replacing a failed node with one with less disk capacity is not
supported, and will cause DRBD to refuse to connect to the replaced node.

• Install the base system and applications.

• Install DRBD and copy /etc/drbd.conf and all of /etc/drbd.d/ from the surviving node.

• Follow the steps outlined in Chapter 5, Configuring DRBD [25], but stop short of Section 5.5,
“The initial device synchronization” [29].

Manually starting a full device synchronization is not necessary at this point, it will commence
automatically upon connection to the surviving primary node.

7.3. Manual�split�brain�recovery
DRBD detects split brain at the time connectivity becomes available again and the peer nodes
exchange the initial DRBD protocol handshake. If DRBD detects that both nodes are (or were at
some point, while disconnected) in the primary role, it immediately tears down the replication
connection. The tell-tale sign of this is a message like the following appearing in the system log:

Split-Brain detected, dropping connection!

After split brain has been detected, one node will always have the resource in a StandAlone
connection state. The other might either also be in the StandAlone state (if both nodes
detected the split brain simultaneously), or in WFConnection (if the peer tore down the
connection before the other node had a chance to detect split brain).

At this point, unless you configured DRBD to automatically recover from split brain, you must
manually intervene by selecting one node whose modifications will be discarded (this node is
referred to as the split brain victim). This intervention is made with the following commands:

Troubleshooting and error recovery

56

drbdadm secondary <resource>
drbdadm connect --discard-my-data <resource>

On the other node (the split brain survivor), if its connection state is also StandAlone, you would
enter:

drbdadm connect <resource>

You may omit this step if the node is already in the WFConnection state; it will then reconnect
automatically.

If the resource affected by the split brain is a stacked resource [48], use drbdadm --stacked
instead of just drbdadm.

Upon connection, your split brain victim immediately changes its connection state to
SyncTarget, and has its modifications overwritten by the remaining primary node.

Note

The split brain victim is not subjected to a full device synchronization. Instead, it
has its local modifications rolled back, and any modifications made on the split brain
survivor propagate to the victim.

After re-synchronization has completed, the split brain is considered resolved and the two nodes
form a fully consistent, redundant replicated storage system again.

Part IV. DRBD-enabled�applications

58

Chapter 8. Integrating�DRBD�with
Pacemaker�clusters

Using DRBD in conjunction with the Pacemaker cluster stack is arguably DRBD’s most frequently
found use case. Pacemaker is also one of the applications that make DRBD extremely powerful
in a wide variety of usage scenarios.

8.1. Pacemaker�primer
Pacemaker is a sophisticated, feature-rich, and widely deployed cluster resource manager for the
Linux platform. It comes with a rich set of documentation. In order to understand this chapter,
reading the following documents is highly recommended:

• Clusters From Scratch [http://www.clusterlabs.org/doc/Cluster_from_Scratch.pdf], a step-
by-step guide to configuring high availability clusters;

• CRM CLI (command line interface) tool [http://www.clusterlabs.org/doc/crm_cli.html], a
manual for the CRM shell, a simple and intuitive command line interface bundled with
Pacemaker;

• Pacemaker Configuration Explained [http://www.clusterlabs.org/doc/en-US/
Pacemaker/1.0/html/Pacemaker_Explained/s-intro-pacemaker.html], a reference document
explaining the concept and design behind Pacemaker.

8.2. Adding�a�DRBD-backed�service�to�the
cluster�configuration

This section explains how to enable a DRBD-backed service in a Pacemaker cluster.

Note

If you are employing the DRBD OCF resource agent, it is recommended that you
defer DRBD startup, shutdown, promotion, and demotion exclusively to the OCF
resource agent. That means that you should disable the DRBD init script:

chkconfig drbd off

The ocf:linbit:drbd OCF resource agent provides Master/Slave capability, allowing
Pacemaker to start and monitor the DRBD resource on multiple nodes and promoting and
demoting as needed. You must, however, understand that the drbd RA disconnects and detaches
all DRBD resources it manages on Pacemaker shutdown, and also upon enabling standby mode
for a node.

Important

The OCF resource agent which ships with DRBD belongs to the linbit provider,
and hence installs as /usr/lib/ocf/resource.d/linbit/drbd. There is a
legacy resource agent that ships as part of the OCF resource agents package, which
uses the heartbeat provider and installs into /usr/lib/ocf/resource.d/
heartbeat/drbd. The legacy OCF RA is deprecated and should no longer be used.

In order to enable a DRBD-backed configuration for a MySQL database in a Pacemaker CRM
cluster with the drbd OCF resource agent, you must create both the necessary resources,

http://www.clusterlabs.org/doc/Cluster_from_Scratch.pdf
http://www.clusterlabs.org/doc/Cluster_from_Scratch.pdf
http://www.clusterlabs.org/doc/crm_cli.html
http://www.clusterlabs.org/doc/crm_cli.html
http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/s-intro-pacemaker.html
http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/s-intro-pacemaker.html
http://www.clusterlabs.org/doc/en-US/Pacemaker/1.0/html/Pacemaker_Explained/s-intro-pacemaker.html

Integrating DRBD with
Pacemaker clusters

59

and Pacemaker constraints to ensure your service only starts on a previously promoted DRBD
resource. You may do so using the crm shell, as outlined in the following example:

Pacemaker configuration for DRBD-backed MySQL service.

crm configure
crm(live)configure# primitive drbd_mysql ocf:linbit:drbd \
 params drbd_resource="mysql" \
 op monitor interval="15s"
crm(live)configure# ms ms_drbd_mysql drbd_mysql \
 meta master-max="1" master-node-max="1" \
 clone-max="2" clone-node-max="1" \
 notify="true"
crm(live)configure# primitive fs_mysql ocf:heartbeat:Filesystem \
 params device="/dev/drbd/by-res/mysql" \
 directory="/var/lib/mysql" fstype="ext3"
crm(live)configure# primitive ip_mysql ocf:heartbeat:IPaddr2 \
 params ip="10.9.42.1" nic="eth0"
crm(live)configure# primitive mysqld lsb:mysqld
crm(live)configure# group mysql fs_mysql ip_mysql mysqld
crm(live)configure# colocation mysql_on_drbd \
 inf: mysql ms_drbd_mysql:Master
crm(live)configure# order mysql_after_drbd \
 inf: ms_drbd_mysql:promote mysql:start
crm(live)configure# commit
crm(live)configure# exit
bye

After this, your configuration should be enabled. Pacemaker now selects a node on which it
promotes the DRBD resource, and then starts the DRBD-backed resource group on that same
node.

8.3. Using�resource-level�fencing�in�Pacemaker
clusters

This section outlines the steps necessary to prevent Pacemaker from promoting a drbd Master/
Slave resource when its DRBD replication link has been interrupted. This keeps Pacemaker from
starting a service with outdated data and causing an unwanted "time warp" in the process.

In order to enable any resource-level fencing for DRBD, you must add the following lines to your
resource configuration:

resource <resource> {
 disk {
 fencing resource-only;
 ...
 }
}

You will also have to make changes to the handlers section depending on the cluster
infrastructure being used:

• Heartbeat-based Pacemaker clusters can employ the configuration outlined in Section 8.3.1,
“Resource-level fencing with dopd” [60].

• Both Corosync- and Heartbeat-based clusters can use the functionality explained in
Section 8.3.2, “Resource-level fencing using the Cluster Information Base (CIB)” [61].

Integrating DRBD with
Pacemaker clusters

60

Important

It is absolutely vital to configure at least two independent cluster communications
channels for this functionality to work correctly. Heartbeat-based Pacemaker
clusters should define at least two cluster communication links in their ha.cf
configuration files. Corosync clusters should list at least two redundant rings in
corosync.conf.

8.3.1. Resource-level�fencing�with�dopd

In Heartbeat-based Pacemaker clusters, DRBD can use a resources-level fencing facility named
the DRBD outdate-peer daemon, or dopd for short.

8.3.1.1. Heartbeat�configuration�for�dopd

To enable dopd, you must add these lines to your /etc/ha.d/ha.cf file:

respawn hacluster /usr/lib/heartbeat/dopd
apiauth dopd gid=haclient uid=hacluster

You may have to adjust dopd's path according to your preferred distribution. On some
distributions and architectures, the correct path is /usr/lib64/heartbeat/dopd.

After you have made this change and copied ha.cf to the peer node, put Pacemaker in
maintenance mode and run /etc/init.d/heartbeat reload to have Heartbeat re-read
its configuration file. Afterwards, you should be able to verify that you now have a running dopd
process.

Note

You can check for this process either by running ps ax | grep dopd or by issuing
killall -0 dopd.

8.3.1.2. DRBD�Configuration�for�dopd

Once dopd is running, add these items to your DRBD resource configuration:

resource <resource> {
 handlers {
 fence-peer "/usr/lib/heartbeat/drbd-peer-outdater -t 5";
 ...
 }
 disk {
 fencing resource-only;
 ...
 }
 ...
}

As with dopd, your distribution may place the drbd-peer-outdater binary in /usr/lib64/
heartbeat depending on your system architecture.

Finally, copy your drbd.conf to the peer node and issue drbdadm adjust resource to
reconfigure your resource and reflect your changes.

8.3.1.3. Testing�dopd�functionality

To test whether your dopd setup is working correctly, interrupt the replication link of a configured
and connected resource while Heartbeat services are running normally. You may do so simply

Integrating DRBD with
Pacemaker clusters

61

by physically unplugging the network link, but that is fairly invasive. Instead, you may insert a
temporary iptables rule to drop incoming DRBD traffic to the TCP port used by your resource.

After this, you will be able to observe the resource connection state [33] change from
Connected to WFConnection. Allow a few seconds to pass, and you should see the disk
state [34]become Outdated/DUnknown. That is what dopd is responsible for.

Any attempt to switch the outdated resource to the primary role will fail after this.

When re-instituting network connectivity (either by plugging the physical link or by removing
the temporary iptables rule you inserted previously), the connection state will change to
Connected, and then promptly to SyncTarget (assuming changes occurred on the primary
node during the network interruption). Then you will be able to observe a brief synchronization
period, and finally, the previously outdated resource will be marked as UpToDate again.

8.3.2. Resource-level�fencing�using�the�Cluster
Information�Base�(CIB)

In order to enable resource-level fencing for Pacemaker, you will have to set two options in
drbd.conf:

resource <resource> {
 disk {
 fencing resource-only;
 ...
 }
 handlers {
 fence-peer "/usr/lib/drbd/crm-fence-peer.sh";
 after-resync-target "/usr/lib/drbd/crm-unfence-peer.sh";
 ...
 }
 ...
}

Thus, if the DRBD replication link becomes disconnected, the crm-fence-peer.sh script
contacts the cluster manager, determines the Pacemaker Master/Slave resource associated with
this DRBD resource, and ensures that the Master/Slave resource no longer gets promoted on
any node other than the currently active one. Conversely, when the connection is re-established
and DRBD completes its synchronization process, then that constraint is removed and the cluster
manager is free to promote the resource on any node again.

8.4. Using�stacked�DRBD�resources�in
Pacemaker�clusters

Stacked resources allow DRBD to be used for multi-level redundancy in multiple-node clusters, or
to establish off-site disaster recovery capability. This section describes how to configure DRBD
and Pacemaker in such configurations.

8.4.1. Adding�off-site�disaster�recovery�to�Pacemaker
clusters

In this configuration scenario, we would deal with a two-node high availability cluster in one
site, plus a separate node which would presumably be housed off-site. The third node acts as a
disaster recovery node and is a standalone server. Consider the following illustration to describe
the concept.

Integrating DRBD with
Pacemaker clusters

62

Figure 8.1. DRBD resource stacking in Pacemaker clusters

In this example, alice and bob form a two-node Pacemaker cluster, whereas charlie is an
off-site node not managed by Pacemaker.

To create such a configuration, you would first configure and initialize DRBD resources as
described in Section 6.15, “Creating a three-node setup” [48]. Then, configure Pacemaker with
the following CRM configuration:

primitive p_drbd_r0 ocf:linbit:drbd \
 params drbd_resource="r0"

primitive p_drbd_r0-U ocf:linbit:drbd \
 params drbd_resource="r0-U"

primitive p_ip_stacked ocf:heartbeat:IPaddr2 \
 params ip="192.168.42.1" nic="eth0"

ms ms_drbd_r0 p_drbd_r0 \
 meta master-max="1" master-node-max="1" \
 clone-max="2" clone-node-max="1" \
 notify="true" globally-unique="false"

ms ms_drbd_r0-U p_drbd_r0-U \
 meta master-max="1" clone-max="1" \
 clone-node-max="1" master-node-max="1" \
 notify="true" globally-unique="false"

colocation c_drbd_r0-U_on_drbd_r0 \
 inf: ms_drbd_r0-U ms_drbd_r0:Master

colocation c_drbd_r0-U_on_ip \
 inf: ms_drbd_r0-U p_ip_stacked

colocation c_ip_on_r0_master \

Integrating DRBD with
Pacemaker clusters

63

 inf: p_ip_stacked ms_drbd_r0:Master

order o_ip_before_r0-U \
 inf: p_ip_stacked ms_drbd_r0-U:start

order o_drbd_r0_before_r0-U \
 inf: ms_drbd_r0:promote ms_drbd_r0-U:start

Assuming you created this configuration in a temporary file named /tmp/crm.txt, you may
import it into the live cluster configuration with the following command:

crm configure < /tmp/crm.txt

This configuration will ensure that the following actions occur in the correct order on the alice/
bob cluster:

1. Pacemaker starts the DRBD resource r0 on both cluster nodes, and promotes one node to the
Master (DRBD Primary) role.

2. Pacemaker then starts the IP address 192.168.42.1, which the stacked resource is to use for
replication to the third node. It does so on the node it has previously promoted to the Master
role for r0 DRBD resource.

3. On the node which now has the Primary role for r0 and also the replication IP address for r0-
U, Pacemaker now starts the r0-U DRBD resource, which connects and replicates to the off-
site node.

4. Pacemaker then promotes the r0-U resource to the Primary role too, so it can be used by an
application.

Thus, this Pacemaker configuration ensures that there is not only full data redundancy between
cluster nodes, but also to the third, off-site node.

Note

This type of setup is usually deployed together with DRBD Proxy [11].

8.4.2. Using�stacked�resources�to�achieve�4-way
redundancy�in�Pacemaker�clusters

In this configuration, a total of three DRBD resources (two unstacked, one stacked) are used to
achieve 4-way storage redundancy. This means that of a 4-node cluster, up to three nodes can
fail while still providing service availability.

Consider the following illustration to explain the concept.

Integrating DRBD with
Pacemaker clusters

64

Figure 8.2. DRBD resource stacking in Pacemaker clusters

Pacemaker Cluster
(local)

Pacemaker Cluster
(remote)

left

alice bob charlie daisy

left right right

stacked stacked

In this example, alice, bob, charlie, and daisy form two two-node Pacemaker clusters.
alice and bob form the cluster named left and replicate data using a DRBD resource between
them, while charlie and daisy do the same with a separate DRBD resource, in a cluster named
right. A third, stacked DRBD resource connects the two clusters.

Note

Due to limitations in the Pacemaker cluster manager as of Pacemaker version 1.0.5,
it is not possible to create this setup in a single four-node cluster without disabling
CIB validation, which is an advanced process not recommended for general-purpose
use. It is anticipated that this is being addressed in future Pacemaker releases.

To create such a configuration, you would first configure and initialize DRBD resources as
described in Section 6.15, “Creating a three-node setup” [48] (except that the remote half of the
DRBD configuration is also stacked, not just the local cluster). Then, configure Pacemaker with
the following CRM configuration, starting with the cluster left:

primitive p_drbd_left ocf:linbit:drbd \
 params drbd_resource="left"

primitive p_drbd_stacked ocf:linbit:drbd \
 params drbd_resource="stacked"

primitive p_ip_stacked_left ocf:heartbeat:IPaddr2 \
 params ip="10.9.9.100" nic="eth0"

ms ms_drbd_left p_drbd_left \
 meta master-max="1" master-node-max="1" \
 clone-max="2" clone-node-max="1" \
 notify="true"

ms ms_drbd_stacked p_drbd_stacked \
 meta master-max="1" clone-max="1" \
 clone-node-max="1" master-node-max="1" \
 notify="true" target-role="Master"

colocation c_ip_on_left_master \
 inf: p_ip_stacked_left ms_drbd_left:Master

Integrating DRBD with
Pacemaker clusters

65

colocation c_drbd_stacked_on_ip_left \
 inf: ms_drbd_stacked p_ip_stacked_left

order o_ip_before_stacked_left \
 inf: p_ip_stacked_left ms_drbd_stacked_left:start

order o_drbd_left_before_stacked_left \
 inf: ms_drbd_left:promote ms_drbd_stacked_left:start

Assuming you created this configuration in a temporary file named /tmp/crm.txt, you may
import it into the live cluster configuration with the following command:

crm configure < /tmp/crm.txt

After adding this configuration to the CIB, Pacemaker will execute the following actions:

1. Bring up the DRBD resource left replicating between alice and bob promoting the resource
to the Master role on one of these nodes.

2. Bring up the IP address 10.9.9.100 (on either alice or bob, depending on which of these
holds the Master role for the resource left).

3. Bring up the DRBD resource stacked on the same node that holds the just-configured IP
address.

4. Promote the stacked DRBD resource to the Primary role.

Now, proceed on the cluster right by creating the following configuration:

primitive p_drbd_right ocf:linbit:drbd \
 params drbd_resource="right"

primitive p_drbd_stacked ocf:linbit:drbd \
 params drbd_resource="stacked"

primitive p_ip_stacked_right ocf:heartbeat:IPaddr2 \
 params ip="10.9.10.101" nic="eth0"

ms ms_drbd_right p_drbd_right \
 meta master-max="1" master-node-max="1" \
 clone-max="2" clone-node-max="1" \
 notify="true"

ms ms_drbd_stacked p_drbd_stacked \
 meta master-max="1" clone-max="1" \
 clone-node-max="1" master-node-max="1" \
 notify="true" target-role="Slave"

colocation c_drbd_stacked_on_ip_right \
 inf: ms_drbd_stacked p_ip_stacked_right

colocation c_ip_on_right_master \
 inf: p_ip_stacked_right ms_drbd_right:Master

order o_ip_before_stacked_right \
 inf: p_ip_stacked_right ms_drbd_stacked_right:start

order o_drbd_right_before_stacked_right \
 inf: ms_drbd_right:promote ms_drbd_stacked_right:start

Integrating DRBD with
Pacemaker clusters

66

After adding this configuration to the CIB, Pacemaker will execute the following actions:

1. Bring up the DRBD resource right replicating between charlie and daisy, promoting the
resource to the Master role on one of these nodes.

2. Bring up the IP address 10.9.10.101 (on either charlie or daisy, depending on which of
these holds the Master role for the resource right).

3. Bring up the DRBD resource stacked on the same node that holds the just-configured IP
address.

4. Leave the stacked DRBD resource in the Secondary role (due to target-role="Slave").

8.5. Configuring�DRBD�to�replicate�between
two�SAN-backed�Pacemaker�clusters

This is a somewhat advanced setup usually employed in split-site configurations. It involves two
separate Pacemaker clusters, where each cluster has access to a separate Storage Area Network
(SAN). DRBD is then used to replicate data stored on that SAN, across an IP link between sites.

Consider the following illustration to describe the concept.

Figure 8.3. Using DRBD to replicate between SAN-based clusters

Which of the individual nodes in each site currently acts as the DRBD peer is not explicitly
defined — the DRBD peers are said to float [12]; that is, DRBD binds to virtual IP addresses not
tied to a specific physical machine.

Note

This type of setup is usually deployed together with DRBD Proxy [11]and/or truck
based replication [12].

Since this type of setup deals with shared storage, configuring and testing STONITH is absolutely
vital for it to work properly.

8.5.1. DRBD�resource�configuration

To enable your DRBD resource to float, configure it in drbd.conf in the following fashion:

Integrating DRBD with
Pacemaker clusters

67

resource <resource> {
 ...
 device /dev/drbd0;
 disk /dev/sda1;
 meta-disk internal;
 floating 10.9.9.100:7788;
 floating 10.9.10.101:7788;
}

The floating keyword replaces the on <host> sections normally found in the resource
configuration. In this mode, DRBD identifies peers by IP address and TCP port, rather than by host
name. It is important to note that the addresses specified must be virtual cluster IP addresses,
rather than physical node IP addresses, for floating to function properly. As shown in the example,
in split-site configurations the two floating addresses can be expected to belong to two separate
IP networks — it is thus vital for routers and firewalls to properly allow DRBD replication traffic
between the nodes.

8.5.2. Pacemaker�resource�configuration

A DRBD floating peers setup, in terms of Pacemaker configuration, involves the following items
(in each of the two Pacemaker clusters involved):

• A virtual cluster IP address.

• A master/slave DRBD resource (using the DRBD OCF resource agent).

• Pacemaker constraints ensuring that resources are started on the correct nodes, and in the
correct order.

To configure a resource named mysql in a floating peers configuration in a 2-node cluster, using
the replication address 10.9.9.100, configure Pacemaker with the following crm commands:

crm configure
crm(live)configure# primitive p_ip_float_left ocf:heartbeat:IPaddr2 \
 params ip=10.9.9.100
crm(live)configure# primitive p_drbd_mysql ocf:linbit:drbd \
 params drbd_resource=mysql
crm(live)configure# ms ms_drbd_mysql drbd_mysql \
 meta master-max="1" master-node-max="1" \
 clone-max="1" clone-node-max="1" \
 notify="true" target-role="Master"
crm(live)configure# order drbd_after_left \
 inf: p_ip_float_left ms_drbd_mysql
crm(live)configure# colocation drbd_on_left \
 inf: ms_drbd_mysql p_ip_float_left
crm(live)configure# commit
bye

After adding this configuration to the CIB, Pacemaker will execute the following actions:

1. Bring up the IP address 10.9.9.100 (on either alice or bob).

2. Bring up the DRBD resource according to the IP address configured.

3. Promote the DRBD resource to the Primary role.

Then, in order to create the matching configuration in the other cluster, configure that Pacemaker
instance with the following commands:

crm configure

Integrating DRBD with
Pacemaker clusters

68

crm(live)configure# primitive p_ip_float_right ocf:heartbeat:IPaddr2 \
 params ip=10.9.10.101
crm(live)configure# primitive drbd_mysql ocf:linbit:drbd \
 params drbd_resource=mysql
crm(live)configure# ms ms_drbd_mysql drbd_mysql \
 meta master-max="1" master-node-max="1" \
 clone-max="1" clone-node-max="1" \
 notify="true" target-role="Slave"
crm(live)configure# order drbd_after_right \
 inf: p_ip_float_right ms_drbd_mysql
crm(live)configure# colocation drbd_on_right
 inf: ms_drbd_mysql p_ip_float_right
crm(live)configure# commit
bye

After adding this configuration to the CIB, Pacemaker will execute the following actions:

1. Bring up the IP address 10.9.10.101 (on either charlie or daisy).

2. Bring up the DRBD resource according to the IP address configured.

3. Leave the DRBD resource in the Secondary role (due to target-role="Slave").

8.5.3. Site�fail-over

In split-site configurations, it may be necessary to transfer services from one site to another. This
may be a consequence of a scheduled transition, or of a disastrous event. In case the transition is
a normal, anticipated event, the recommended course of action is this:

• Connect to the cluster on the site about to relinquish resources, and change the affected DRBD
resource’s target-role attribute from Master to Slave. This will shut down any resources
depending on the Primary role of the DRBD resource, demote it, and continue to run, ready to
receive updates from a new Primary.

• Connect to the cluster on the site about to take over resources, and change the affected
DRBD resource’s target-role attribute from Slave to Master. This will promote the DRBD
resources, start any other Pacemaker resources depending on the Primary role of the DRBD
resource, and replicate updates to the remote site.

• To fail back, simply reverse the procedure.

In the event that of a catastrophic outage on the active site, it can be expected that the site is
off line and no longer replicated to the backup site. In such an event:

• Connect to the cluster on the still-functioning site resources, and change the affected DRBD
resource’s target-role attribute from Slave to Master. This will promote the DRBD
resources, and start any other Pacemaker resources depending on the Primary role of the DRBD
resource.

• When the original site is restored or rebuilt, you may connect the DRBD resources again, and
subsequently fail back using the reverse procedure.

69

Chapter 9. Integrating�DRBD�with�Red
Hat�Cluster

This chapter describes using DRBD as replicated storage for Red Hat Cluster high availability
clusters.

Note

This guide uses the unofficial term Red Hat Cluster to refer to a product that has had
multiple official product names over its history, including Red Hat Cluster Suite and
Red Hat Enterprise Linux High Availability Add-On.

9.1. Red�Hat�Cluster�background�information

9.1.1. Fencing

Red Hat Cluster, originally designed primarily for shared storage clusters, relies on node fencing
to prevent concurrent, uncoordinated access to shared resources. The Red Hat Cluster fencing
infrastructure relies on the fencing daemon fenced, and fencing agents implemented as shell
scripts.

Even though DRBD-based clusters utilize no shared storage resources and thus fencing is not
strictly required from DRBD’s standpoint, Red Hat Cluster Suite still requires fencing even in
DRBD-based configurations.

9.1.2. The�Resource�Group�Manager

The resource group manager (rgmanager, alternatively clurgmgr) is akin to Pacemaker. It
serves as the cluster management suite’s primary interface with the applications it is configured
to manage.

9.1.2.1. Red�Hat�Cluster�resources

A single highly available application, filesystem, IP address and the like is referred to as a resource
in Red Hat Cluster terminology.

Where resources depend on each other — such as, for example, an NFS export depending on a
filesystem being mounted — they form a resource tree, a form of nesting resources inside another.
Resources in inner levels of nesting may inherit parameters from resources in outer nesting levels.
The concept of resource trees is absent in Pacemaker.

9.1.2.2. Red�Hat�Cluster�services

Where resources form a co-dependent collection, that collection is called a service. This is
different from Pacemaker, where such a collection is referred to as a resource group.

9.1.2.3. rgmanager�resource�agents

The resource agents invoked by rgmanager are similar to those used by Pacemaker, in the sense
that they utilize the same shell-based API as defined in the Open Cluster Framework (OCF),
although Pacemaker utilizes some extensions not defined in the framework. Thus in theory, the
resource agents are largely interchangeable between Red Hat Cluster Suite and Pacemaker — in
practive however, the two cluster management suites use different resource agents even for
similar or identical tasks.

Integrating DRBD
with Red Hat Cluster

70

Red Hat Cluster resource agents install into the /usr/share/cluster directory. Unlike
Pacemaker OCF resource agents which are by convention self-contained, some Red Hat Cluster
resource agents are split into a .sh file containing the actual shell code, and a .metadata file
containing XML resource agent metadata.

DRBD includes a Red Hat Cluster resource agent. It installs into the customary directory as
drbd.sh and drbd.metadata.

9.2. Red�Hat�Cluster�configuration
This section outlines the configuration steps necessary to get Red Hat Cluster running. Preparing
your cluster configuration is fairly straightforward; all a DRBD-based Red Hat Cluster requires
are two participating nodes (referred to as Cluster Members in Red Hat’s documentation) and a
fencing device.

Note

For more information about configuring Red Hat clusters, see Red Hat’s
documentation on the Red Hat Cluster and GFS. [http://www.redhat.com/docs/
manuals/csgfs/]

9.2.1. The�cluster.conf�file

RHEL clusters keep their configuration in a single configuration file, /etc/cluster/
cluster.conf. You may manage your cluster configuration in the following ways:

Editing the configuration file directly. This is the most straightforward method. It has no
prerequisites other than having a text editor available.

Using the system-config-cluster GUI. This is a GUI application written in Python using
Glade. It requires the availability of an X display (either directly on a server console, or tunneled
via SSH).

Using the Conga web-based management infrastructure. The Conga infrastructure consists
of a node agent (ricci) communicating with the local cluster manager, cluster resource
manager, and cluster LVM daemon, and an administration web application (luci) which may be
used to configure the cluster infrastructure using a simple web browser.

9.3. Using�DRBD�in�Red�Hat�Cluster�fail-over
clusters

Note

This section deals exclusively with setting up DRBD for Red Hat Cluster fail
over clusters not involving GFS. For GFS (and GFS2) configurations, please see
Chapter 11, Using GFS with DRBD [80].

This section, like Chapter 8, Integrating DRBD with Pacemaker clusters [58], assumes you
are about to configure a highly available MySQL database with the following configuration
parameters:

• The DRBD resources to be used as your database storage area is named mysql, and it manages
the device /dev/drbd0.

• The DRBD device holds an ext3 filesystem which is to be mounted to /var/lib/mysql (the
default MySQL data directory).

http://www.redhat.com/docs/manuals/csgfs/
http://www.redhat.com/docs/manuals/csgfs/
http://www.redhat.com/docs/manuals/csgfs/
http://www.redhat.com/docs/manuals/csgfs/

Integrating DRBD
with Red Hat Cluster

71

• The MySQL database is to utilize that filesystem, and listen on a dedicated cluster IP address,
192.168.42.1.

9.3.1. Setting�up�your�cluster�configuration

To configure your highly available MySQL database, create or modify your /etc/cluster/
cluster.conf file to contain the following configuration items.

To do that, open /etc/cluster/cluster.conf with your preferred text editing application.
Then, include the following items in your resource configuration:

<rm>
 <resources />
 <service autostart="1" name="mysql">
 <drbd name="drbd-mysql" resource="mysql">
 <fs device="/dev/drbd/by-res/mysql/0"
 mountpoint="/var/lib/mysql"
 fstype="ext3"
 name="mysql"
 options="noatime"/>
 </drbd>
 <ip address="10.9.9.180" monitor_link="1"/>
 <mysql config_file="/etc/my.cnf"
 listen_address="10.9.9.180"
 name="mysqld"/>
 </service>
</rm>

Note

This example assumes a single-volume resource.

Nesting resource references inside one another in <service/> is the Red Hat Cluster way of
expressing resource dependencies.

Be sure to increment the config_version attribute, found on the root <cluster> element,
after you have completed your configuration. Then, issue the following commands to commit
your changes to the running cluster configuration:

ccs_tool update /etc/cluster/cluster.conf
cman_tool version -r <version>

In the second command, be sure to replace <version> with the new cluster configuration version
number.

Note

Both the system-config-cluster GUI configuration utility and the Conga
web based cluster management infrastructure will complain about your cluster
configuration after including the drbd resource agent in your cluster.conf file.
This is due to the design of the Python cluster management wrappers provided by
these two applications which does not expect third party extensions to the cluster
infrastructure.

Thus, when you utilize the drbd resource agent in cluster configurations, it is not recommended
to utilize system-config-cluster nor Conga for cluster configuration purposes. Using
either of these tools to only monitor the cluster’s status, however, is expected to work fine.

72

Chapter 10. Using�LVM�with�DRBD
This chapter deals with managing DRBD in conjunction with LVM2. In particular, it covers

• using LVM Logical Volumes as backing devices for DRBD;

• using DRBD devices as Physical Volumes for LVM;

• combining these to concepts to implement a layered LVM approach using DRBD.

If you happen to be unfamiliar with these terms to begin with, Section 10.1, “LVM primer” [72]
may serve as your LVM starting point — although you are always encouraged, of course, to
familiarize yourself with LVM in some more detail than this section provides.

10.1. LVM�primer
LVM2 is an implementation of logical volume management in the context of the Linux device
mapper framework. It has practically nothing in common, other than the name and acronym, with
the original LVM implementation. The old implementation (now retroactively named "LVM1") is
considered obsolete; it is not covered in this section.

When working with LVM, it is important to understand its most basic concepts:

Physical Volume (PV). A PV is an underlying block device exclusively managed by LVM. PVs
can either be entire hard disks or individual partitions. It is common practice to create a partition
table on the hard disk where one partition is dedicated to the use by the Linux LVM.

Note

The partition type "Linux LVM" (signature 0x8E) can be used to identify partitions
for exclusive use by LVM. This, however, is not required — LVM recognizes PVs by
way of a signature written to the device upon PV initialization.

Volume Group (VG). A VG is the basic administrative unit of the LVM. A VG may include one or
more several PVs. Every VG has a unique name. A VG may be extended during runtime by adding
additional PVs, or by enlarging an existing PV.

Logical Volume (LV). LVs may be created during runtime within VGs and are available to the
other parts of the kernel as regular block devices. As such, they may be used to hold a file system,
or for any other purpose block devices may be used for. LVs may be resized while they are online,
and they may also be moved from one PV to another (as long as the PVs are part of the same VG).

Snapshot Logical Volume (SLV). Snapshots are temporary point-in-time copies of LVs.
Creating snapshots is an operation that completes almost instantly, even if the original LV (the
origin volume) has a size of several hundred GiByte. Usually, a snapshot requires significantly less
space than the original LV.

Using LVM with DRBD

73

Figure 10.1. LVM overview

LV

s LV

Volu m e Grou p (VG)

PV

LV

s LV

PV PV...

...

10.2. Using�a�Logical�Volume�as�a�DRBD�backing
device

Since an existing Logical Volume is simply a block device in Linux terms, you may of course use it
as a DRBD backing device. To use LV’s in this manner, you simply create them, and then initialize
them for DRBD as you normally would.

This example assumes that a Volume Group named foo already exists on both nodes of on your
LVM-enabled system, and that you wish to create a DRBD resource named r0 using a Logical
Volume in that Volume Group.

First, you create the Logical Volume:

lvcreate --name bar --size 10G foo
 Logical volume "bar" created

Of course, you must complete this command on both nodes of your DRBD cluster. After this, you
should have a block device named /dev/foo/bar on either node.

Then, you can simply enter the newly-created volumes in your resource configuration:

resource r0 {
 ...
 on alice {
 device /dev/drbd0;
 disk /dev/foo/bar;
 ...
 }
 on bob {
 device /dev/drbd0;

Using LVM with DRBD

74

 disk /dev/foo/bar;
 ...
 }
}

Now you can continue to bring your resource up [28], just as you would if you were using non-
LVM block devices.

10.3. Using�automated�LVM�snapshots�during
DRBD�synchronization

While DRBD is synchronizing, the SyncTarget's state is Inconsistent until the
synchronization completes. If in this situation the SyncSource happens to fail (beyond repair),
this puts you in an unfortunate position: the node with good data is dead, and the surviving node
has bad data.

When serving DRBD off an LVM Logical Volume, you can mitigate this problem by creating
an automated snapshot when synchronization starts, and automatically removing that same
snapshot once synchronization has completed successfully.

In order to enable automated snapshotting during resynchronization, add the following lines to
your resource configuration:

Automating snapshots before DRBD synchronization.

resource r0 {
 handlers {
 before-resync-target "/usr/lib/drbd/snapshot-resync-target-lvm.sh";
 after-resync-target "/usr/lib/drbd/unsnapshot-resync-target-lvm.sh";
 }
}

The two scripts parse the $DRBD_RESOURCE$ environment variable which DRBD automatically
passes to any handler it invokes. The snapshot-resync-target-lvm.sh script then
create an LVM snapshot for any volume the resource contains immediately before synchronization
kicks off. In case the script fails, the synchronization does not commence.

Once synchronization completes, the unsnapshot-resync-target-lvm.sh script
removes the snapshot, which is then no longer needed. In case unsnapshotting fails, the snapshot
continues to linger around.

Important

You should review dangling snapshots as soon as possible. A full snapshot causes both
the snapshot itself and its origin volume to fail.

If at any time your SyncSource does fail beyond repair and you decide to revert to your latest
snapshot on the peer, you may do so by issuing the lvconvert -M command.

10.4. Configuring�a�DRBD�resource�as�a�Physical
Volume

In order to prepare a DRBD resource for use as a Physical Volume, it is necessary to create a PV
signature on the DRBD device. In order to do so, issue one of the following commands on the
node where the resource is currently in the primary role:

Using LVM with DRBD

75

pvcreate /dev/drbdX

or

pvcreate /dev/drbd/by-res/<resource>/0

Note

This example assumes a single-volume resource.

Now, it is necessary to include this device in the list of devices LVM scans for PV signatures.
In order to do this, you must edit the LVM configuration file, normally named /etc/lvm/
lvm.conf. Find the line in the devices section that contains the filter keyword and edit
it accordingly. If all your PVs are to be stored on DRBD devices, the following is an appropriate
filter option:

filter = ["a|drbd.*|", "r|.*|"]

This filter expression accepts PV signatures found on any DRBD devices, while rejecting (ignoring)
all others.

Note

By default, LVM scans all block devices found in /dev for PV signatures. This is
equivalent to filter = ["a|.*|"].

If you want to use stacked resources as LVM PVs, then you will need a more explicit filter
configuration. You need to make sure that LVM detects PV signatures on stacked resources, while
ignoring them on the corresponding lower-level resources and backing devices. This example
assumes that your lower-level DRBD resources use device minors 0 through 9, whereas your
stacked resources are using device minors from 10 upwards:

filter = ["a|drbd1[0-9]|", "r|.*|"]

This filter expression accepts PV signatures found only on the DRBD devices /dev/drbd10
through /dev/drbd19, while rejecting (ignoring) all others.

After modifying the lvm.conf file, you must run the vgscan command so LVM discards its
configuration cache and re-scans devices for PV signatures.

You may of course use a different filter configuration to match your particular system
configuration. What is important to remember, however, is that you need to

• Accept (include) the DRBD devices you wish to use as PVs;

• Reject (exclude) the corresponding lower-level devices, so as to avoid LVM finding duplicate
PV signatures.

In addition, you should disable the LVM cache by setting:

write_cache_state = 0

After disabling the LVM cache, make sure you remove any stale cache entries by deleting /etc/
lvm/cache/.cache.

You must repeat the above steps on the peer node.

When you have configured your new PV, you may proceed to add it to a Volume Group, or create
a new Volume Group from it. The DRBD resource must, of course, be in the primary role while
doing so.

Using LVM with DRBD

76

vgcreate <name> /dev/drbdX

Note

While it is possible to mix DRBD and non-DRBD Physical Volumes within the same
Volume Group, doing so is not recommended and unlikely to be of any practical value.

When you have created your VG, you may start carving Logical Volumes out of it, using the
lvcreate command (as with a non-DRBD-backed Volume Group).

10.5. Adding�a�new�DRBD�volume�to�an�existing
Volume�Group

Occasionally, you may want to add new DRBD-backed Physical Volumes to a Volume Group.
Whenever you do so, a new volume should be added to an existing resource configuration. This
preserves the replication stream and ensures write fidelity across all PVs in the VG.

Important

if your LVM volume group is managed by Pacemaker as explained in Section 10.7,
“Highly available LVM with Pacemaker” [78], it is imperative to place the cluster
in maintenance mode prior to making changes to the DRBD configuration.

Extend your resource configuration to include an additional volume, as in the following example:

resource r0 {
 volume 0 {
 device /dev/drbd1;
 disk /dev/sda7;
 meta-disk internal;
 }
 volume 1 {
 device /dev/drbd2;
 disk /dev/sda8;
 meta-disk internal;
 }
 on alice {
 address 10.1.1.31:7789;
 }
 on bob {
 address 10.1.1.32:7789;
 }
}

Make sure your DRBD configuration is identical across nodes, then issue:

drbdadm new-minor r0 1

This will enable the new volume 1 in the resource r0. Once the new volume has been added to
the replication stream, you may initialize and add it to the volume group:

pvcreate /dev/drbd/by-res/<resource>/1
lvextend <name> /dev/drbd/by-res/<resource>/1

This will add the new PV /dev/drbd/by-res/<resource>/1 to the <name> VG, preserving
write fidelity across the entire VG.

Using LVM with DRBD

77

10.6. Nested�LVM�configuration�with�DRBD
It is possible, if slightly advanced, to both use Logical Volumes as backing devices for DRBD and
at the same time use a DRBD device itself as a Physical Volume. To provide an example, consider
the following configuration:

• We have two partitions, named /dev/sda1, and /dev/sdb1, which we intend to use as
Physical Volumes.

• Both of these PVs are to become part of a Volume Group named local.

• We want to create a 10-GiB Logical Volume in this VG, to be named r0.

• This LV will become the local backing device for our DRBD resource, also named r0, which
corresponds to the device /dev/drbd0.

• This device will be the sole PV for another Volume Group, named replicated.

• This VG is to contain two more logical volumes named foo(4 GiB) and bar(6 GiB).

In order to enable this configuration, follow these steps:

• Set an appropriate filter option in your /etc/lvm/lvm.conf:

indexterm:[LVM]indexterm:[filter expression (LVM)]

filter = ["a|sd.*|", "a|drbd.*|", "r|.*|"]

This filter expression accepts PV signatures found on any SCSI and DRBD devices, while rejecting
(ignoring) all others.

After modifying the lvm.conf file, you must run the vgscan command so LVM discards its
configuration cache and re-scans devices for PV signatures.

• Disable the LVM cache by setting:

write_cache_state = 0

After disabling the LVM cache, make sure you remove any stale cache entries by deleting /etc/
lvm/cache/.cache.

• Now, you may initialize your two SCSI partitions as PVs:

pvcreate /dev/sda1
Physical volume "/dev/sda1" successfully created
pvcreate /dev/sdb1
Physical volume "/dev/sdb1" successfully created

• The next step is creating your low-level VG named local, consisting of the two PVs you just
initialized:

vgcreate local /dev/sda1 /dev/sda2
Volume group "local" successfully created

• Now you may create your Logical Volume to be used as DRBD’s backing device:

lvcreate --name r0 --size 10G local
Logical volume "r0" created

• Repeat all steps, up to this point, on the peer node.

• Then, edit your /etc/drbd.conf to create a new resource named r0:

Using LVM with DRBD

78

resource r0 {
 device /dev/drbd0;
 disk /dev/local/r0;
 meta-disk internal;
 on <host> { address <address>:<port>; }
 on <host> { address <address>:<port>; }
}

After you have created your new resource configuration, be sure to copy your drbd.conf
contents to the peer node.

• After this, initialize your resource as described in Section 5.4, “Enabling your resource for the
first time” [28](on both nodes).

• Then, promote your resource (on one node):

drbdadm primary r0

• Now, on the node where you just promoted your resource, initialize your DRBD device as a new
Physical Volume:

pvcreate /dev/drbd0
Physical volume "/dev/drbd0" successfully created

• Create your VG named replicated, using the PV you just initialized, on the same node:

vgcreate replicated /dev/drbd0
Volume group "replicated" successfully created

• Finally, create your new Logical Volumes within this newly-created VG:

lvcreate --name foo --size 4G replicated
Logical volume "foo" created
lvcreate --name bar --size 6G replicated
Logical volume "bar" created

The Logical Volumes foo and bar will now be available as /dev/replicated/foo and /dev/
replicated/bar on the local node.

To make them available on the peer node, first issue the following sequence of commands on the
local node:

vgchange -a n replicated
0 logical volume(s) in volume group "replicated" now active
drbdadm secondary r0

Then, issue these commands on the peer node:

drbdadm primary r0
vgchange -a y replicated
2 logical volume(s) in volume group "replicated" now active

After this, the block devices /dev/replicated/foo and /dev/replicated/bar will be
available on the peer node.

10.7. Highly�available�LVM�with�Pacemaker
The process of transferring volume groups between peers and making the corresponding logical
volumes available can be automated. The Pacemaker LVM resource agent is designed for exactly
that purpose.

Using LVM with DRBD

79

In order to put an existing, DRBD-backed volume group under Pacemaker management, run the
following commands in the crm shell:

Pacemaker configuration for DRBD-backed LVM Volume Group.

primitive p_drbd_r0 ocf:linbit:drbd \
 params drbd_resource="r0" \
 op monitor interval="15s"
ms ms_drbd_r0 p_drbd_r0 \
 meta master-max="1" master-node-max="1" \
 clone-max="2" clone-node-max="1" \
 notify="true"
primitive p_lvm_r0 ocf:heartbeat:LVM \
 params volgrpname="r0"
colocation c_lvm_on_drbd inf: p_lvm_r0 ms_drbd_r0:Master
order o_drbd_before_lvm inf: ms_drbd_r0:promote p_lvm_r0:start
commit

After you have committed this configuration, Pacemaker will automatically make the r0 volume
group available on whichever node currently has the Primary (Master) role for the DRBD resource.

80

Chapter 11. Using�GFS�with�DRBD
This chapter outlines the steps necessary to set up a DRBD resource as a block device holding a
shared Global File System (GFS). It covers both GFS and GFS2.

In order to use GFS on top of DRBD, you must configure DRBD in dual-primary mode [5].

11.1. GFS�primer
The Red Hat Global File System (GFS) is Red Hat’s implementation of a concurrent-access shared
storage file system. As any such filesystem, GFS allows multiple nodes to access the same storage
device, in read/write fashion, simultaneously without risking data corruption. It does so by using
a Distributed Lock Manager (DLM) which manages concurrent access from cluster members.

GFS was designed, from the outset, for use with conventional shared storage devices. Regardless,
it is perfectly possible to use DRBD, in dual-primary mode, as a replicated storage device for GFS.
Applications may benefit from reduced read/write latency due to the fact that DRBD normally
reads from and writes to local storage, as opposed to the SAN devices GFS is normally configured
to run from. Also, of course, DRBD adds an additional physical copy to every GFS filesystem, thus
adding redundancy to the concept.

GFS makes use of a cluster-aware variant of LVM, termed Cluster Logical Volume Manager or
CLVM. As such, some parallelism exists between using DRBD as the data storage for GFS, and
using DRBD as a Physical Volume for conventional LVM [74].

GFS file systems are usually tightly integrated with Red Hat’s own cluster management
framework, the Red Hat Cluster [69]. This chapter explains the use of DRBD in conjunction with
GFS in the Red Hat Cluster context.

GFS, CLVM, and Red Hat Cluster are available in Red Hat Enterprise Linux (RHEL) and distributions
derived from it, such as CentOS. Packages built from the same sources are also available in Debian
GNU/Linux. This chapter assumes running GFS on a Red Hat Enterprise Linux system.

11.2. Creating�a�DRBD�resource�suitable�for
GFS

Since GFS is a shared cluster file system expecting concurrent read/write storage access from all
cluster nodes, any DRBD resource to be used for storing a GFS filesystem must be configured in
dual-primary mode [5]. Also, it is recommended to use some of DRBD’s features for automatic
recovery from split brain [47]. And, it is necessary for the resource to switch to the primary role
immediately after startup. To do all this, include the following lines in the resource configuration:

resource <resource> {
 startup {
 become-primary-on both;
 ...
 }
 net {
 allow-two-primaries yes;
 after-sb-0pri discard-zero-changes;
 after-sb-1pri discard-secondary;
 after-sb-2pri disconnect;
 ...
 }
 ...

Using GFS with DRBD

81

}

Once you have added these options to your freshly-configured resource [25], you may initialize
your resource as you normally would [28]. Since the allow-two-primaries option is set to
yes for this resource, you will be able to promote the resource [37]to the primary role on both
nodes.

11.3. Configuring�LVM�to�recognize�the�DRBD
resource

GFS uses CLVM, the cluster-aware version of LVM, to manage block devices to be used by GFS.
In order to use CLVM with DRBD, ensure that your LVM configuration

• uses clustered locking. To do this, set the following option in /etc/lvm/lvm.conf:

locking_type = 3

• scans your DRBD devices to recognize DRBD-based Physical Volumes (PVs). This applies as
to conventional (non-clustered) LVM; see Section 10.4, “Configuring a DRBD resource as a
Physical Volume” [74] for details.

11.4. Configuring�your�cluster�to�support�GFS
After you have created your new DRBD resource and completed your initial cluster
configuration [70], you must enable and start the following system services on both nodes of
your GFS cluster:

• cman(this also starts ccsd and fenced),

• clvmd.

11.5. Creating�a�GFS�filesystem
In order to create a GFS filesystem on your dual-primary DRBD resource, you must first initialize
it as a Logical Volume for LVM [72].

Contrary to conventional, non-cluster-aware LVM configurations, the following steps must be
completed on only one node due to the cluster-aware nature of CLVM:

pvcreate /dev/drbd/by-res/<resource>/0
Physical volume "/dev/drbd<num>" successfully created
vgcreate <vg-name> /dev/drbd/by-res/<resource>/0
Volume group "<vg-name>" successfully created
lvcreate --size <size> --name <lv-name> <vg-name>
Logical volume "<lv-name>" created

Note

This example assumes a single-volume resource.

CLVM will immediately notify the peer node of these changes; issuing lvs (or lvdisplay) on
the peer node will list the newly created logical volume.

Now, you may proceed by creating the actual filesystem:

mkfs -t gfs -p lock_dlm -j 2 /dev/<vg-name>/<lv-name>

Using GFS with DRBD

82

Or, for a GFS2 filesystem:

mkfs -t gfs2 -p lock_dlm -j 2 -t <cluster>:<name>
/dev/<vg-name>/<lv-name>

The -j option in this command refers to the number of journals to keep for GFS. This must be
identical to the number of nodes in the GFS cluster; since DRBD does not support more than two
nodes, the value to set here is always 2.

The -t option, applicable only for GFS2 filesystems, defines the lock table name. This follows
the format <cluster>:<name>, where <cluster> must match your cluster name as defined in /
etc/cluster/cluster.conf. Thus, only members of that cluster will be permitted to use
the filesystem. By contrast, <name> is an arbitrary file system name unique in the cluster.

11.6. Using�your�GFS�filesystem
After you have created your filesystem, you may add it to /etc/fstab:

/dev/<vg-name>/<lv-name> <mountpoint> gfs defaults 0 0

For a GFS2 filesystem, simply change the defined filesystem type to:

/dev/<vg-name>/<lv-name> <mountpoint> gfs2 defaults 0 0

Do not forget to make this change on both cluster nodes.

After this, you may mount your new filesystem by starting the gfs service (on both nodes):

service gfs start

From then onwards, as long as you have DRBD configured to start automatically on system
startup, before the RHCS services and the gfs service, you will be able to use this GFS file system
as you would use one that is configured on traditional shared storage.

83

Chapter 12. Using�OCFS2�with�DRBD
This chapter outlines the steps necessary to set up a DRBD resource as a block device holding a
shared Oracle Cluster File System, version 2 (OCFS2).

12.1. OCFS2�primer
The Oracle Cluster File System, version 2 (OCFS2) is a concurrent access shared storage file
system developed by Oracle Corporation. Unlike its predecessor OCFS, which was specifically
designed and only suitable for Oracle database payloads, OCFS2 is a general-purpose filesystem
that implements most POSIX semantics. The most common use case for OCFS2 is arguably Oracle
Real Application Cluster (RAC), but OCFS2 may also be used for load-balanced NFS clusters, for
example.

Although originally designed for use with conventional shared storage devices, OCFS2 is equally
well suited to be deployed on dual-Primary DRBD [5]. Applications reading from the filesystem
may benefit from reduced read latency due to the fact that DRBD reads from and writes to local
storage, as opposed to the SAN devices OCFS2 otherwise normally runs on. In addition, DRBD
adds redundancy to OCFS2 by adding an additional copy to every filesystem image, as opposed
to just a single filesystem image that is merely shared.

Like other shared cluster file systems such as GFS [80], OCFS2 allows multiple nodes to access
the same storage device, in read/write mode, simultaneously without risking data corruption.
It does so by using a Distributed Lock Manager (DLM) which manages concurrent access from
cluster nodes. The DLM itself uses a virtual file system (ocfs2_dlmfs) which is separate from
the actual OCFS2 file systems present on the system.

OCFS2 may either use an intrinsic cluster communication layer to manage cluster membership
and filesystem mount and unmount operation, or alternatively defer those tasks to the
Pacemaker [58]cluster infrastructure.

OCFS2 is available in SUSE Linux Enterprise Server (where it is the primarily supported shared
cluster file system), CentOS, Debian GNU/Linux, and Ubuntu Server Edition. Oracle also provides
packages for Red Hat Enterprise Linux (RHEL). This chapter assumes running OCFS2 on a SUSE
Linux Enterprise Server system.

12.2. Creating�a�DRBD�resource�suitable�for
OCFS2

Since OCFS2 is a shared cluster file system expecting concurrent read/write storage access from
all cluster nodes, any DRBD resource to be used for storing a OCFS2 filesystem must be configured
in dual-primary mode [5]. Also, it is recommended to use some of DRBD’s features for automatic
recovery from split brain [47]. And, it is necessary for the resource to switch to the primary role
immediately after startup. To do all this, include the following lines in the resource configuration:

resource <resource> {
 startup {
 become-primary-on both;
 ...
 }
 net {
 # allow-two-primaries yes;
 after-sb-0pri discard-zero-changes;
 after-sb-1pri discard-secondary;
 after-sb-2pri disconnect;
 ...

Using OCFS2 with DRBD

84

 }
 ...
}

It is not recommended to set the allow-two-primaries option to yes upon initial
configuration. You should do so after the initial resource synchronization has completed.

Once you have added these options to your freshly-configured resource [25], you may initialize
your resource as you normally would [28]. After you set the allow-two-primaries option
to yes for this resource, you will be able to promote the resource [37]to the primary role on
both nodes.

12.3. Creating�an�OCFS2�filesystem
Now, use OCFS2’s mkfs implementation to create the file system:

mkfs -t ocfs2 -N 2 -L ocfs2_drbd0 /dev/drbd0
mkfs.ocfs2 1.4.0
Filesystem label=ocfs2_drbd0
Block size=1024 (bits=10)
Cluster size=4096 (bits=12)
Volume size=205586432 (50192 clusters) (200768 blocks)
7 cluster groups (tail covers 4112 clusters, rest cover 7680 clusters)
Journal size=4194304
Initial number of node slots: 2
Creating bitmaps: done
Initializing superblock: done
Writing system files: done
Writing superblock: done
Writing backup superblock: 0 block(s)
Formatting Journals: done
Writing lost+found: done
mkfs.ocfs2 successful

This will create an OCFS2 file system with two node slots on /dev/drbd0, and set the filesystem
label to ocfs2_drbd0. You may specify other options on mkfs invocation; please see the
mkfs.ocfs2 system manual page for details.

12.4. Pacemaker�OCFS2�management

12.4.1. Adding�a�Dual-Primary�DRBD�resource�to
Pacemaker

An existing Dual-Primary DRBD resource [83]may be added to Pacemaker resource
management with the following crm configuration:

primitive p_drbd_ocfs2 ocf:linbit:drbd \
 params drbd_resource="ocfs2"
ms ms_drbd_ocfs2 p_drbd_ocfs2 \
 meta master-max=2 clone-max=2 notify=true

Important

Note the master-max=2 meta variable; it enables dual-Master mode for a
Pacemaker master/slave set. This requires that allow-two-primaries is also set
to yes in the DRBD configuration. Otherwise, Pacemaker will flag a configuration
error during resource validation.

Using OCFS2 with DRBD

85

12.4.2. Adding�OCFS2�management�capability�to
Pacemaker

In order to manage OCFS2 and the kernel Distributed Lock Manager (DLM), Pacemaker uses a
total of three different resource agents:

• ocf:pacemaker:controld— Pacemaker’s interface to the DLM;

• ocf:ocfs2:o2cb— Pacemaker’s interface to OCFS2 cluster management;

• ocf:heartbeat:Filesystem— the generic filesystem management resource agent
which supports cluster file systems when configured as a Pacemaker clone.

You may enable all nodes in a Pacemaker cluster for OCFS2 management by creating a cloned
group of resources, with the following crm configuration:

primitive p_controld ocf:pacemaker:controld
primitive p_o2cb ocf:ocfs2:o2cb
group g_ocfs2mgmt p_controld p_o2cb
clone cl_ocfs2mgmt g_ocfs2mgmt meta interleave=true

Once this configuration is committed, Pacemaker will start instances of the controld and o2cb
resource types on all nodes in the cluster.

12.4.3. Adding�an�OCFS2�filesystem�to�Pacemaker

Pacemaker manages OCFS2 filesystems using the conventional
ocf:heartbeat:Filesystem resource agent, albeit in clone mode. To put an OCFS2
filesystem under Pacemaker management, use the following crm configuration:

primitive p_fs_ocfs2 ocf:heartbeat:Filesystem \
 params device="/dev/drbd/by-res/ocfs2/0" directory="/srv/ocfs2" \
 fstype="ocfs2" options="rw,noatime"
clone cl_fs_ocfs2 p_fs_ocfs2

Note

This example assumes a single-volume resource.

12.4.4. Adding�required�Pacemaker�constraints�to
manage�OCFS2�filesystems

In order to tie all OCFS2-related resources and clones together, add the following contraints to
your Pacemaker configuration:

order o_ocfs2 ms_drbd_ocfs2:promote cl_ocfs2mgmt:start cl_fs_ocfs2:start
colocation c_ocfs2 cl_fs_ocfs2 cl_ocfs2mgmt ms_drbd_ocfs2:Master

12.5. Legacy�OCFS2�management�(without
Pacemaker)

Important

The information presented in this section applies to legacy systems where OCFS2
DLM support is not available in Pacemaker. It is preserved here for reference
purposes only. New installations should always use the Pacemaker [84] approach.

Using OCFS2 with DRBD

86

12.5.1. Configuring�your�cluster�to�support�OCFS2

12.5.1.1. Creating�the�configuration�file

OCFS2 uses a central configuration file, /etc/ocfs2/cluster.conf.

When creating your OCFS2 cluster, be sure to add both your hosts to the cluster configuration.
The default port (7777) is usually an acceptable choice for cluster interconnect communications.
If you choose any other port number, be sure to choose one that does not clash with an existing
port used by DRBD (or any other configured TCP/IP).

If you feel less than comfortable editing the cluster.conf file directly, you may also use
the ocfs2console graphical configuration utility which is usually more convenient. Regardless
of the approach you selected, your /etc/ocfs2/cluster.conf file contents should look
roughly like this:

node:
 ip_port = 7777
 ip_address = 10.1.1.31
 number = 0
 name = alice
 cluster = ocfs2

node:
 ip_port = 7777
 ip_address = 10.1.1.32
 number = 1
 name = bob
 cluster = ocfs2

cluster:
 node_count = 2
 name = ocfs2

When you have configured you cluster configuration, use scp to distribute the configuration to
both nodes in the cluster.

12.5.1.2. Configuring�the�O2CB�driver

====== SUSE Linux Enterprise systems

On SLES, you may utilize the configure option of the o2cb init script:

/etc/init.d/o2cb configure
Configuring the O2CB driver.

This will configure the on-boot properties of the O2CB driver.
The following questions will determine whether the driver is loaded on
boot. The current values will be shown in brackets ('[]'). Hitting
<ENTER> without typing an answer will keep that current value. Ctrl-C
will abort.

Load O2CB driver on boot (y/n) [y]:
Cluster to start on boot (Enter "none" to clear) [ocfs2]:
Specify heartbeat dead threshold (>=7) [31]:
Specify network idle timeout in ms (>=5000) [30000]:
Specify network keepalive delay in ms (>=1000) [2000]:
Specify network reconnect delay in ms (>=2000) [2000]:

Using OCFS2 with DRBD

87

Use user-space driven heartbeat? (y/n) [n]:
Writing O2CB configuration: OK
Loading module "configfs": OK
Mounting configfs filesystem at /sys/kernel/config: OK
Loading module "ocfs2_nodemanager": OK
Loading module "ocfs2_dlm": OK
Loading module "ocfs2_dlmfs": OK
Mounting ocfs2_dlmfs filesystem at /dlm: OK
Starting O2CB cluster ocfs2: OK

====== .Debian GNU/Linux systems On Debian, the configure option to /etc/init.d/
o2cb is not available. Instead, reconfigure the ocfs2-tools package to enable the driver:

dpkg-reconfigure -p medium -f readline ocfs2-tools
Configuring ocfs2-tools
Would you like to start an OCFS2 cluster (O2CB) at boot time? yes
Name of the cluster to start at boot time: ocfs2
The O2CB heartbeat threshold sets up the maximum time in seconds that a node
awaits for an I/O operation. After it, the node "fences" itself, and you will
probably see a crash.

It is calculated as the result of: (threshold - 1) x 2.

Its default value is 31 (60 seconds).

Raise it if you have slow disks and/or crashes with kernel messages like:

o2hb_write_timeout: 164 ERROR: heartbeat write timeout to device XXXX after NNNN
milliseconds
O2CB Heartbeat threshold: `31`
 Loading filesystem "configfs": OK
Mounting configfs filesystem at /sys/kernel/config: OK
Loading stack plugin "o2cb": OK
Loading filesystem "ocfs2_dlmfs": OK
Mounting ocfs2_dlmfs filesystem at /dlm: OK
Setting cluster stack "o2cb": OK
Starting O2CB cluster ocfs2: OK

12.5.2. Using�your�OCFS2�filesystem

When you have completed cluster configuration and created your file system, you may mount it
as any other file system:

mount -t ocfs2 /dev/drbd0 /shared

Your kernel log (accessible by issuing the command dmesg) should then contain a line similar to
this one:

ocfs2: Mounting device (147,0) on (node 0, slot 0) with ordered data mode.

From that point forward, you should be able to simultaneously mount your OCFS2 filesystem on
both your nodes, in read/write mode.

88

Chapter 13. Using�Xen�with�DRBD
This chapter outlines the use of DRBD as a Virtual Block Device (VBD) for virtualization
envirnoments using the Xen hypervisor.

13.1. Xen�primer
Xen is a virtualization framework originally developed at the University of Cambridge (UK), and
later being maintained by XenSource, Inc. (now a part of Citrix). It is included in reasonably recent
releases of most Linux distributions, such as Debian GNU/Linux (since version 4.0), SUSE Linux
Enterprise Server (since release 10), Red Hat Enterprise Linux (since release 5), and many others.

Xen uses paravirtualization — a virtualization method involving a high degree of cooperation
between the virtualization host and guest virtual machines — with selected guest operating
systems for improved performance in comparison to conventional virtualization solutions (which
are typically based on hardware emulation). Xen also supports full hardware emulation on CPUs
that support the appropriate virtualization extensions, in Xen parlance, this is known as HVM
("hardware-assisted virtual machine").

Note

At the time of writing, CPU extensions supported by Xen for HVM are Intel’s
Virtualization Technology (VT, formerly codenamed "Vanderpool"), and AMD’s
Secure Virtual Machine (SVM, formerly known as "Pacifica").

Xen supports live migration, which refers to the capability of transferring a running guest
operating system from one physical host to another, without interruption.

When a DRBD resource is used as a replicated Virtual Block Device (VBD) for Xen, it serves to make
the entire contents of a domU’s virtual disk available on two servers, which can then be configured
for automatic fail-over. That way, DRBD does not only provide redundancy for Linux servers (as
in non-virtualized DRBD deployment scenarios), but also for any other operating system that can
be virtualized under Xen — which, in essence, includes any operating system available on 32- or
64-bit Intel compatible architectures.

13.2. Setting�DRBD�module�parameters�for�use
with�Xen

For Xen Domain-0 kernels, it is recommended to load the DRBD module with the set to 1. To do
so, create (or open) the file /etc/modprobe.d/drbd.conf and enter the following line:

options drbd disable_sendpage=1

13.3. Creating�a�DRBD�resource�suitable�to�act
as�a�Xen�VBD

Configuring a DRBD resource that is to be used as a Virtual Block Device for Xen is fairly
straightforward — in essence, the typical configuration matches that of a DRBD resource being
used for any other purpose. However, if you want to enable live migration for your guest instance,
you need to enable dual-primary mode [5]for this resource:

resource <resource> {
 net {

Using Xen with DRBD

89

 allow-two-primaries yes;
 ...
 }
 ...
}

Enabling dual-primary mode is necessary because Xen, before initiating live migration, checks for
write access on all VBDs a resource is configured to use on both the source and the destination
host for the migration.

13.4. Using�DRBD�VBDs
In order to use a DRBD resource as the virtual block device, you must add a line like the following
to your Xen domU configuration:

disk = ['drbd:<resource>,xvda,w']

This example configuration makes the DRBD resource named resource available to the domU as
/dev/xvda in read/write mode (w).

Of course, you may use multiple DRBD resources with a single domU. In that case, simply add
more entries like the one provided in the example to the disk option, separated by commas.

Note

There are three sets of circumstances under which you cannot use this approach:

• You are configuring a fully virtualized (HVM) domU.

• You are installing your domU using a graphical installation utility, and that graphical installer
does not support the drbd: syntax.

• You are configuring a domU without the kernel, initrd, and extra options, relying instead
on bootloader and bootloader_args to use a Xen pseudo-bootloader, and that pseudo-
bootloader does not support the drbd: syntax.

• pygrub+ (prior to Xen 3.3) and domUloader.py (shipped with Xen on SUSE Linux
Enterprise Server 10) are two examples of pseudo-bootloaders that do not support the
drbd: virtual block device configuration syntax.

• pygrub from Xen 3.3 forward, and the domUloader.py version that ships with SLES 11
do support this syntax.

Under these circumstances, you must use the traditional phy: device syntax and the DRBD
device name that is associated with your resource, not the resource name. That, however, requires
that you manage DRBD state transitions outside Xen, which is a less flexible approach than that
provided by the drbd resource type.

13.5. Starting,�stopping,�and�migrating�DRBD-
backed�domU’s

Starting the domU. Once you have configured your DRBD-backed domU, you may start it as
you would any other domU:

xm create <domU>
Using config file "+/etc/xen/<domU>+".
Started domain <domU>

Using Xen with DRBD

90

In the process, the DRBD resource you configured as the VBD will be promoted to the primary
role, and made accessible to Xen as expected.

Stopping the domU. This is equally straightforward:

xm shutdown -w <domU>
Domain <domU> terminated.

Again, as you would expect, the DRBD resource is returned to the secondary role after the domU
is successfully shut down.

Migrating the domU. This, too, is done using the usual Xen tools:

xm migrate --live <domU> <destination-host>

In this case, several administrative steps are automatically taken in rapid succession: . The resource
is promoted to the primary role on destination-host. . Live migration of domU is initiated on the
local host. . When migration to the destination host has completed, the resource is demoted to
the secondary role locally.

The fact that both resources must briefly run in the primary role on both hosts is the reason for
having to configure the resource in dual-primary mode in the first place.

13.6. Internals�of�DRBD/Xen�integration
Xen supports two Virtual Block Device types natively:

phy. This device type is used to hand "physical" block devices, available in the host
environment, off to a guest domU in an essentially transparent fashion.

file. This device type is used to make file-based block device images available to the guest
domU. It works by creating a loop block device from the original image file, and then handing that
block device off to the domU in much the same fashion as the phy device type does.

If a Virtual Block Device configured in the disk option of a domU configuration uses any prefix
other than phy:, file:, or no prefix at all (in which case Xen defaults to using the phy device
type), Xen expects to find a helper script named block-prefix in the Xen scripts directory,
commonly /etc/xen/scripts.

The DRBD distribution provides such a script for the drbd device type, named /etc/xen/
scripts/block-drbd. This script handles the necessary DRBD resource state transitions as
described earlier in this chapter.

13.7. Integrating�Xen�with�Pacemaker
In order to fully capitalize on the benefits provided by having a DRBD-backed Xen VBD’s, it is
recommended to have Heartbeat manage the associated domU’s as Heartbeat resources.

You may configure a Xen domU as a Pacemaker resource, and automate resource failover. To do
so, use the Xen OCF resource agent. If you are using the drbd Xen device type described in this
chapter, you will not need to configure any separate drbd resource for use by the Xen cluster
resource. Instead, the block-drbd helper script will do all the necessary resource transitions
for you.

Part V. Optimizing�DRBD�performance

92

Chapter 14. Measuring�block�device
performance

14.1. Measuring�throughput
When measuring the impact of using DRBD on a system’s I/O throughput, the absolute throughput
the system is capable of is of little relevance. What is much more interesting is the relative impact
DRBD has on I/O performance. Thus it is always necessary to measure I/O throughput both with
and without DRBD.

Caution

The tests described in this section are intrusive; they overwrite data and bring DRBD
devices out of sync. It is thus vital that you perform them only on scratch volumes
which can be discarded after testing has completed.

I/O throughput estimation works by writing significantly large chunks of data to a block device,
and measuring the amount of time the system took to complete the write operation. This can be
easily done using a fairly ubiquitous utility, dd, whose reasonably recent versions include a built-
in throughput estimation.

A simple dd-based throughput benchmark, assuming you have a scratch resource named test
which is currently connected and in the secondary role on both nodes, is one like the following:

TEST_RESOURCE=test
TEST_DEVICE=$(drbdadm sh-dev $TEST_RESOURCE)
TEST_LL_DEVICE=$(drbdadm sh-ll-dev $TEST_RESOURCE)
drbdadm primary $TEST_RESOURCE
for i in $(seq 5); do
 dd if=/dev/zero of=$TEST_DEVICE bs=512M count=1 oflag=direct
done
drbdadm down $TEST_RESOURCE
for i in $(seq 5); do
 dd if=/dev/zero of=$TEST_LL_DEVICE bs=512M count=1 oflag=direct
done

This test simply writes a 512M chunk of data to your DRBD device, and then to its backing device
for comparison. Both tests are repeated 5 times each to allow for some statistical averaging. The
relevant result is the throughput measurements generated by dd.

Note

For freshly enabled DRBD devices, it is normal to see significantly reduced
performance on the first dd run. This is due to the Activity Log being "cold", and is
no cause for concern.

14.2. Measuring�latency
Latency measurements have objectives completely different from throughput benchmarks: in I/
O latency tests, one writes a very small chunk of data (ideally the smallest chunk of data that
the system can deal with), and observes the time it takes to complete that write. The process is
usually repeated several times to account for normal statistical fluctuations.

Just as throughput measurements, I/O latency measurements may be performed using the
ubiquitous dd utility, albeit with different settings and an entirely different focus of observation.

Measuring block
device performance

93

Provided below is a simple dd-based latency micro-benchmark, assuming you have a scratch
resource named test which is currently connected and in the secondary role on both nodes:

TEST_RESOURCE=test
TEST_DEVICE=$(drbdadm sh-dev $TEST_RESOURCE)
TEST_LL_DEVICE=$(drbdadm sh-ll-dev $TEST_RESOURCE)
drbdadm primary $TEST_RESOURCE
dd if=/dev/zero of=$TEST_DEVICE bs=512 count=1000 oflag=direct
drbdadm down $TEST_RESOURCE
dd if=/dev/zero of=$TEST_LL_DEVICE bs=512 count=1000 oflag=direct

This test writes 1,000 512-byte chunks of data to your DRBD device, and then to its backing
device for comparison. 512 bytes is the smallest block size a Linux system (on all architectures
except s390) is expected to handle.

It is important to understand that throughput measurements generated by dd are completely
irrelevant for this test; what is important is the time elapsed during the completion of said 1,000
writes. Dividing this time by 1,000 gives the average latency of a single sector write.

94

Chapter 15. Optimizing�DRBD
throughput

This chapter deals with optimizing DRBD throughput. It examines some hardware considerations
with regard to throughput optimization, and details tuning recommendations for that purpose.

15.1. Hardware�considerations
DRBD throughput is affected by both the bandwidth of the underlying I/O subsystem (disks,
controllers, and corresponding caches), and the bandwidth of the replication network.

I/O subsystem throughput. I/O subsystem throughput is determined, largely, by the number
of disks that can be written to in parallel. A single, reasonably recent, SCSI or SAS disk will
typically allow streaming writes of rougly 40MB/s to the single disk. When deployed in a striping
configuration, the I/O subsystem will parallelize writes across disks, effectively multiplying a
single disk’s throughput by the number of stripes in the configuration. Thus the same, 40MB/s
disks will allow effective throughput of 120MB/s in a RAID-0 or RAID-1+0 configuration with
three stripes, or 200MB/s with five stripes.

Note

Disk mirroring(RAID-1) in hardware typically has little, if any effect on throughput.
Disk striping with parity(RAID-5) does have an effect on throughput, usually an
adverse one when compared to striping.

Network throughput. Network throughput is usually determined by the amount of traffic
present on the network, and on the throughput of any routing/switching infrastructure present.
These concerns are, however, largely irrelevant in DRBD replication links which are normally
dedicated, back-to-back network connections. Thus, network throughput may be improved
either by switching to a higher-throughput protocol (such as 10 Gigabit Ethernet), or by using link
aggregation over several network links, as one may do using the Linux bonding network driver.

15.2. Throughput�overhead�expectations
When estimating the throughput overhead associated with DRBD, it is important to consider the
following natural limitations:

• DRBD throughput is limited by that of the raw I/O subsystem.

• DRBD throughput is limited by the available network bandwidth.

The minimum between the two establishes the theoretical throughput maximum available to
DRBD. DRBD then reduces that throughput maximum by its additional throughput overhead,
which can be expected to be less than 3 percent.

• Consider the example of two cluster nodes containing I/O subsystems capable of 200 MB/
s throughput, with a Gigabit Ethernet link available between them. Gigabit Ethernet can be
expected to produce 110 MB/s throughput for TCP connections, thus the network connection
would be the bottleneck in this configuration and one would expect about 107 MB/s maximum
DRBD throughput.

• By contrast, if the I/O subsystem is capable of only 100 MB/s for sustained writes, then it
constitutes the bottleneck, and you would be able to expect only 97 MB/s maximum DRBD
throughput.

Optimizing DRBD throughput

95

15.3. Tuning�recommendations
DRBD offers a number of configuration options which may have an effect on your system’s
throughput. This section list some recommendations for tuning for throughput. However, since
throughput is largely hardware dependent, the effects of tweaking the options described
here may vary greatly from system to system. It is important to understand that these
recommendations should not be interpreted as "silver bullets" which would magically remove any
and all throughput bottlenecks.

15.3.1. Setting�max-buffers�and�max-epoch-size

These options affect write performance on the secondary node. max-buffers is the maximum
number of buffers DRBD allocates for writing data to disk while max-epoch-size is the
maximum number of write requests permitted between two write barriers. Under most
circumstances, these two options should be set in parallel, and to identical values. The default for
both is 2048; setting it to around 8000 should be fine for most reasonably high-performance
hardware RAID controllers.

resource <resource> {
 net {
 max-buffers 8000;
 max-epoch-size 8000;
 ...
 }
 ...
}

15.3.2. Tweaking�the�I/O�unplug�watermark

The I/O unplug watermark is a tunable which affects how often the I/O subsystem’s controller is
"kicked" (forced to process pending I/O requests) during normal operation. There is no universally
recommended setting for this option; this is greatly hardware dependent.

Some controllers perform best when "kicked" frequently, so for these controllers it makes sense
to set this fairly low, perhaps even as low as DRBD’s allowable minimum (16). Others perform
best when left alone; for these controllers a setting as high as max-buffers is advisable.

resource <resource> {
 net {
 unplug-watermark 16;
 ...
 }
 ...
}

15.3.3. Tuning�the�TCP�send�buffer�size

The TCP send buffer is a memory buffer for outgoing TCP traffic. By default, it is set to a size
of 128 KiB. For use in high-throughput networks (such as dedicated Gigabit Ethernet or load-
balanced bonded connections), it may make sense to increase this to a size of 512 KiB, or perhaps
even more. Send buffer sizes of more than 2 MiB are generally not recommended (and are also
unlikely to produce any throughput improvement).

resource <resource> {
 net {
 sndbuf-size 512k;
 ...

Optimizing DRBD throughput

96

 }
 ...
}

DRBD also supports TCP send buffer auto-tuning. After enabling this feature, DRBD will
dynamically select an appropriate TCP send buffer size. TCP send buffer auto tuning is enabled
by simply setting the buffer size to zero:

resource <resource> {
 net {
 sndbuf-size 0;
 ...
 }
 ...
}

15.3.4. Tuning�the�Activity�Log�size

If the application using DRBD is write intensive in the sense that it frequently issues small writes
scattered across the device, it is usually advisable to use a fairly large activity log. Otherwise,
frequent metadata updates may be detrimental to write performance.

resource <resource> {
 disk {
 al-extents 3389;
 ...
 }
 ...
}

15.3.5. Disabling�barriers�and�disk�flushes

Warning

The recommendations outlined in this section should be applied only to systems with
non-volatile (battery backed) controller caches.

Systems equipped with battery backed write cache come with built-in means of protecting data in
the face of power failure. In that case, it is permissible to disable some of DRBD’s own safeguards
created for the same purpose. This may be beneficial in terms of throughput:

resource <resource> {
 disk {
 disk-barrier no;
 disk-flushes no;
 ...
 }
 ...
}

97

Chapter 16. Optimizing�DRBD�latency
This chapter deals with optimizing DRBD latency. It examines some hardware considerations with
regard to latency minimization, and details tuning recommendations for that purpose.

16.1. Hardware�considerations
DRBD latency is affected by both the latency of the underlying I/O subsystem (disks, controllers,
and corresponding caches), and the latency of the replication network.

I/O subsystem latency. I/O subsystem latency is primarily a function of disk rotation speed.
Thus, using fast-spinning disks is a valid approach for reducing I/O subsystem latency.

Likewise, the use of a battery-backed write cache (BBWC) reduces write completion times, also
reducing write latency. Most reasonable storage subsystems come with some form of battery-
backed cache, and allow the administrator to configure which portion of this cache is used for read
and write operations. The recommended approach is to disable the disk read cache completely
and use all cache memory available for the disk write cache.

Network latency. Network latency is, in essence, the packet round-trip time () between hosts.
It is influenced by a number of factors, most of which are irrelevant on the dedicated, back-to-
back network connections recommended for use as DRBD replication links. Thus, it is sufficient
to accept that a certain amount of latency always exists in Gigabit Ethernet links, which typically
is on the order of 100 to 200 microseconds (μs) packet RTT.

Network latency may typically be pushed below this limit only by using lower-latency network
protocols, such as running DRBD over Dolphin Express using Dolphin SuperSockets.

16.2. Latency�overhead�expectations
As for throughput, when estimating the latency overhead associated with DRBD, there are some
important natural limitations to consider:

• DRBD latency is bound by that of the raw I/O subsystem.

• DRBD latency is bound by the available network latency.

The sum of the two establishes the theoretical latency minimum incurred to DRBD. DRBD then
adds to that latency a slight additional latency overhead, which can be expected to be less than
1 percent.

• Consider the example of a local disk subsystem with a write latency of 3ms and a network link
with one of 0.2ms. Then the expected DRBD latency would be 3.2 ms or a roughly 7-percent
latency increase over just writing to a local disk.

Note

Latency may be influenced by a number of other factors, including CPU cache
misses, context switches, and others.

16.3. Tuning�recommendations

16.3.1. Setting�DRBD’s�CPU�mask

DRBD allows for setting an explicit CPU mask for its kernel threads. This is particularly beneficial
for applications which would otherwise compete with DRBD for CPU cycles.

Optimizing DRBD latency

98

The CPU mask is a number in whose binary representation the least significant bit represents the
first CPU, the second-least significant bit the second, and so forth. A set bit in the bitmask implies
that the corresponding CPU may be used by DRBD, whereas a cleared bit means it must not. Thus,
for example, a CPU mask of 1 (00000001) means DRBD may use the first CPU only. A mask of
12 (00001100) implies DRBD may use the third and fourth CPU.

An example CPU mask configuration for a resource may look like this:

resource <resource> {
 options {
 cpu-mask 2;
 ...
 }
 ...
}

Important

Of course, in order to minimize CPU competition between DRBD and the application
using it, you need to configure your application to use only those CPUs which DRBD
does not use.

Some applications may provide for this via an entry in a configuration file, just like DRBD itself.
Others include an invocation of the taskset command in an application init script.

16.3.2. Modifying�the�network�MTU

When a block-based (as opposed to extent-based) filesystem is layered above DRBD, it may be
beneficial to change the replication network’s maximum transmission unit (MTU) size to a value
higher than the default of 1500 bytes. Colloquially, this is referred to as "enabling Jumbo frames".

Note

Block-based file systems include ext3, ReiserFS (version 3), and GFS. Extent-based
file systems, in contrast, include XFS, Lustre and OCFS2. Extent-based file systems
are expected to benefit from enabling Jumbo frames only if they hold few and large
files.

The MTU may be changed using the following commands:

ifconfig <interface> mtu <size>

or

ip link set <interface> mtu <size>

<interface> refers to the network interface used for DRBD replication. A typical value for <size>
would be 9000 (bytes).

16.3.3. Enabling�the�deadline�I/O�scheduler

When used in conjunction with high-performance, write back enabled hardware RAID controllers,
DRBD latency may benefit greatly from using the simple deadline I/O scheduler, rather than the
CFQ scheduler. The latter is typically enabled by default in reasonably recent kernel configurations
(post-2.6.18 for most distributions).

Modifications to the I/O scheduler configuration may be performed via the sysfs virtual file
system, mounted at /sys. The scheduler configuration is in /sys/block/<device>, where
<device> is the backing device DRBD uses.

Optimizing DRBD latency

99

Enabling the deadline scheduler works via the following command:

`echo deadline > /sys/block/<device>/queue/scheduler`

You may then also set the following values, which may provide additional latency benefits:

• Disable front merges:

echo 0 > /sys/block/<device>/queue/iosched/front_merges

• Reduce read I/O deadline to 150 milliseconds (the default is 500ms):

echo 150 > /sys/block/<device>/queue/iosched/read_expire

• Reduce write I/O deadline to 1500 milliseconds (the default is 3000ms):

 echo 1500 > /sys/block/<device>/queue/iosched/write_expire

If these values effect a significant latency improvement, you may want to make them permanent
so they are automatically set at system startup. Debian and Ubuntu systems provide this
functionality via the sysfsutils package and the /etc/sysfs.conf configuration file.

You may also make a global I/O scheduler selection by passing the elevator option via your
kernel command line. To do so, edit your boot loader configuration (normally found in /boot/
grub/menu.lst if you are using the GRUB bootloader) and add elevator=deadline to
your list of kernel boot options.

Part VI. Learning�more�about�DRBD

101

Chapter 17. DRBD�Internals
This chapter gives some background information about some of DRBD’s internal algorithms and
structures. It is intended for interested users wishing to gain a certain degree of background
knowledge about DRBD. It does not dive into DRBD’s inner workings deep enough to be a
reference for DRBD developers. For that purpose, please refer to the papers listed in Section 18.6,
“Publications” [109], and of course to the comments in the DRBD source code.

17.1. DRBD�meta�data
DRBD stores various pieces of information about the data it keeps in a dedicated area. This
metadata includes:

• the size of the DRBD device,

• the Generation Identifier (GI, described in detail in Section 17.2, “Generation
Identifiers” [103]),

• the Activity Log (AL, described in detail in Section 17.3, “The Activity Log” [106]).

• the quick-sync bitmap (described in detail in Section 17.4, “The quick-sync bitmap” [107]),

This metadata may be stored internally and externally. Which method is used is configurable on
a per-resource basis.

17.1.1. Internal�meta�data

Configuring a resource to use internal meta data means that DRBD stores its meta data on the
same physical lower-level device as the actual production data. It does so by setting aside an area
at the end of the device for the specific purpose of storing metadata.

Advantage. Since the meta data are inextricably linked with the actual data, no special action
is required from the administrator in case of a hard disk failure. The meta data are lost together
with the actual data and are also restored together.

Disadvantage. In case of the lower-level device being a single physical hard disk (as opposed
to a RAID set), internal meta data may negatively affect write throughput. The performance of
write requests by the application may trigger an update of the meta data in DRBD. If the meta
data are stored on the same magnetic disk of a hard disk, the write operation may result in two
additional movements of the write/read head of the hard disk.

Caution

If you are planning to use internal meta data in conjunction with an existing lower-
level device that already has data which you wish to preserve, you must account for
the space required by DRBD’s meta data.

Otherwise, upon DRBD resource creation, the newly created metadata would overwrite data at
the end of the lower-level device, potentially destroying existing files in the process. To avoid
that, you must do one of the following things:

• Enlarge your lower-level device. This is possible with any logical volume management facility
(such as LVM) as long as you have free space available in the corresponding volume groupIt
may also be supported by hardware storage solutions.

• Shrink your existing file system on your lower-level device. This may or may not be supported
by your file system.

DRBD Internals

102

• If neither of the two are possible, use external meta data [102] instead.

To estimate the amount by which you must enlarge your lower-level device our shrink your file
system, see Section 17.1.3, “Estimating meta data size” [102].

17.1.2. External�meta�data

External meta data is simply stored on a separate, dedicated block device distinct from that which
holds your production data.

Advantage. For some write operations, using external meta data produces a somewhat
improved latency behavior.

Disadvantage. Meta data are not inextricably linked with the actual production data. This
means that manual intervention is required in the case of a hardware failure destroying just the
production data (but not DRBD meta data), to effect a full data sync from the surviving node
onto the subsequently replaced disk.

Use of external meta data is also the only viable option if all of the following apply:

• You are using DRBD to duplicate an existing device that already contains data you wish to
preserve, and

• that existing device does not support enlargement, and

• the existing file system on the device does not support shrinking.

To estimate the required size of the block device dedicated to hold your device meta data, see
Section 17.1.3, “Estimating meta data size” [102].

17.1.3. Estimating�meta�data�size

You may calculate the exact space requirements for DRBD’s meta data using the following formula:

Figure 17.1. Calculating DRBD meta data size (exactly)

Ms =
l

218
Cs

m
£ 8 + 72

Cs is the data device size in sectors.

Note

You may retrieve the device size by issuing blockdev --getsz <device>.

The result, Ms, is also expressed in sectors. To convert to MB, divide by 2048 (for a 512-byte
sector size, which is the default on all Linux platforms except s390).

In practice, you may use a reasonably good approximation, given below. Note that in this formula,
the unit is megabytes, not sectors:

Figure 17.2. Estimating DRBD meta data size (approximately)

MMB < 32768
CMB + 1

DRBD Internals

103

17.2. Generation�Identifiers
DRBD uses generation identifiers (GIs) to identify "generations"of replicated data.

This is DRBD’s internal mechanism used for

• determining whether the two nodes are in fact members of the same cluster (as opposed to
two nodes that were connected accidentally),

• determining the direction of background re-synchronization (if necessary),

• determining whether full re-synchronization is necessary or whether partial re-
synchronization is sufficient,

• identifying split brain.

17.2.1. Data�generations

DRBD marks the start of a new data generation at each of the following occurrences:

• The initial device full sync,

• a disconnected resource switching to the primary role,

• a resource in the primary role disconnecting.

Thus, we can summarize that whenever a resource is in the Connected connection state, and
both nodes' disk state is UpToDate, the current data generation on both nodes is the same. The
inverse is also true.

Every new data generation is identified by a 8-byte, universally unique identifier (UUID).

17.2.2. The�generation�identifier�tuple

DRBD keeps four pieces of information about current and historical data generations in the local
resource meta data:

Current UUID. This is the generation identifier for the current data generation, as seen from
the local node’s perspective. When a resource is Connected and fully synchronized, the current
UUID is identical between nodes.

Bitmap UUID. This is the UUID of the generation against which the on-disk sync bitmap
is tracking changes. As the on-disk sync bitmap itself, this identifier is only relevant while in
disconnected mode. If the resource is Connected, this UUID is always empty (zero).

Two Historical UUIDs. These are the identifiers of the two data generations preceding the
current one.

Collectively, these four items are referred to as the generation identifier tuple, or GI tuple" for
short.

17.2.3. How�generation�identifiers�change

17.2.3.1. Start�of�a�new�data�generation

When a node loses connection to its peer (either by network failure or manual intervention),
DRBD modifies its local generation identifiers in the following manner:

DRBD Internals

104

Figure 17.3. GI tuple changes at start of a new data generation

Historical (2)

Historical (1)

Bitmap (empty)

Current

Historical (2)

Historical (1)

Bitmap

Current

Before After

1. A new UUID is created for the new data generation. This becomes the new current UUID for
the primary node.

2. The previous UUID now refers to the generation the bitmap is tracking changes against, so it
becomes the new bitmap UUID for the primary node.

3. On the secondary node, the GI tuple remains unchanged.

17.2.3.2. Start�of�re-sychronization

Upon the initiation of re-synchronization, DRBD performs these modifications on the local
generation identifiers:

Figure 17.4. GI tuple changes at start of re-synchronization

Historical (2)

Historical (1)

Bitmap

Current

Historical (2)

Historical (1)

Bitmap

Current

Before After

1. The current UUID on the synchronization source remains unchanged.

2. The bitmap UUID on the synchronization source is rotated out to the first historical UUID.

3. A new bitmap UUID is generated on the synchronization source.

4. This UUID becomes the new current UUID on the synchronization target.

5. The bitmap and historical UUID’s on the synchronization target remain unchanged.

17.2.3.3. Completion�of�re-synchronization

When re-synchronization concludes, the following changes are performed:

Figure 17.5. GI tuple changes at completion of re-synchronization

Historical (2)

Historical (1)

Bitmap

Current

Historical (2)

Historical (1)

Bitmap (empty)

Current

Before After

1. The current UUID on the synchronization source remains unchanged.

DRBD Internals

105

2. The bitmap UUID on the synchronization source is rotated out to the first historical UUID,
with that UUID moving to the second historical entry (any existing second historical entry is
discarded).

3. The bitmap UUID on the synchronization source is then emptied (zeroed).

4. The synchronization target adopts the entire GI tuple from the synchronization source.

17.2.4. How�DRBD�uses�generation�identifiers

When a connection between nodes is established, the two nodes exchange their currently
available generation identifiers, and proceed accordingly. A number of possible outcomes exist:

Current UUIDs empty on both nodes. The local node detects that both its current UUID and
the peer’s current UUID are empty. This is the normal occurrence for a freshly configured resource
that has not had the initial full sync initiated. No synchronization takes place; it has to be started
manually.

Current UUIDs empty on one node. The local node detects that the peer’s current UUID is
empty, and its own is not. This is the normal case for a freshly configured resource on which
the initial full sync has just been initiated, the local node having been selected as the initial
synchronization source. DRBD now sets all bits in the on-disk sync bitmap (meaning it considers
the entire device out-of-sync), and starts synchronizing as a synchronization source. In the
opposite case (local current UUID empty, peer’s non-empty), DRBD performs the same steps,
except that the local node becomes the synchronization target.

Equal current UUIDs. The local node detects that its current UUID and the peer’s current UUID
are non-empty and equal. This is the normal occurrence for a resource that went into disconnected
mode at a time when it was in the secondary role, and was not promoted on either node while
disconnected. No synchronization takes place, as none is necessary.

Bitmap UUID matches peer’s current UUID. The local node detects that its bitmap UUID
matches the peer’s current UUID, and that the peer’s bitmap UUID is empty. This is the normal and
expected occurrence after a secondary node failure, with the local node being in the primary role.
It means that the peer never became primary in the meantime and worked on the basis of the
same data generation all along. DRBD now initiates a normal, background re-synchronization, with
the local node becoming the synchronization source. If, conversely, the local node detects that its
bitmap UUID is empty, and that the peer’s bitmap matches the local node’s current UUID, then that
is the normal and expected occurrence after a failure of the local node. Again, DRBD now initiates a
normal, background re-synchronization, with the local node becoming the synchronization target.

Current UUID matches peer’s historical UUID. The local node detects that its current
UUID matches one of the peer’s historical UUID’s. This implies that while the two data sets
share a common ancestor, and the local node has the up-to-date data, the information kept in
the local node’s bitmap is outdated and not useable. Thus, a normal synchronization would be
insufficient. DRBD now marks the entire device as out-of-sync and initiates a full background re-
synchronization, with the local node becoming the synchronization source. In the opposite case
(one of the local node’s historical UUID matches the peer’s current UUID), DRBD performs the
same steps, except that the local node becomes the synchronization target.

Bitmap UUIDs match, current UUIDs do not. The local node detects that its current UUID
differs from the peer’s current UUID, and that the bitmap UUID’s match. This is split brain, but
one where the data generations have the same parent. This means that DRBD invokes split brain
auto-recovery strategies, if configured. Otherwise, DRBD disconnects and waits for manual split
brain resolution.

Neither current nor bitmap UUIDs match. The local node detects that its current UUID differs
from the peer’s current UUID, and that the bitmap UUID’s do not match. This is split brain with
unrelated ancestor generations, thus auto-recovery strategies, even if configured, are moot.
DRBD disconnects and waits for manual split brain resolution.

DRBD Internals

106

No UUIDs match. Finally, in case DRBD fails to detect even a single matching element in the two
nodes' GI tuples, it logs a warning about unrelated data and disconnects. This is DRBD’s safeguard
against accidental connection of two cluster nodes that have never heard of each other before.

17.3. The�Activity�Log

17.3.1. Purpose

During a write operation DRBD forwards the write operation to the local backing block device, but
also sends the data block over the network. These two actions occur, for all practical purposes,
simultaneously. Random timing behavior may cause a situation where the write operation has
been completed, but the transmission via the network has not yet taken place.

If, at this moment, the active node fails and fail-over is being initiated, then this data block is out
of sync between nodes — it has been written on the failed node prior to the crash, but replication
has not yet completed. Thus, when the node eventually recovers, this block must be removed
from the data set of during subsequent synchronisation. Otherwise, the crashed node would be
"one write ahead" of the surviving node, which would violate the "all or nothing" principle of
replicated storage. This is an issue that is not limited to DRBD, in fact, this issue exists in practically
all replicated storage configurations. Many other storage solutions (just as DRBD itself, prior to
version 0.7) thus require that after a failure of the active, that node must be fully synchronized
anew after its recovery.

DRBD’s approach, since version 0.7, is a different one. The activity log (AL), stored in the meta
data area, keeps track of those blocks that have "recently" been written to. Colloquially, these
areas are referred to as hot extents.

If a temporarily failed node that was in active mode at the time of failure is synchronized, only
those hot extents highlighted in the AL need to be synchronized, rather than the full device. This
drastically reduces synchronization time after an active node crash.

17.3.2. Active�extents

The activity log has a configurable parameter, the number of active extents. Every active extent
adds 4MiB to the amount of data being retransmitted after a Primary crash. This parameter must
be understood as a compromise between the following opposites:

Many active extents. Keeping a large activity log improves write throughput. Every time a
new extent is activated, an old extent is reset to inactive. This transition requires a write operation
to the meta data area. If the number of active extents is high, old active extents are swapped out
fairly rarely, reducing meta data write operations and thereby improving performance.

Few active extents. Keeping a small activity log reduces synchronization time after active
node failure and subsequent recovery.

17.3.3. Selecting�a�suitable�Activity�Log�size

The definition of the number of extents should be based on the desired synchronisation time at
a given synchronization rate. The number of active extents can be calculated as follows:

Figure 17.6. Active extents calculation based on sync rate and target sync
time

E = 4
R£ tsync

R is the synchronization rate, given in MB/s. tsync is the target synchronization time, in seconds.
E is the resulting number of active extents.

DRBD Internals

107

To provide an example, suppose our cluster has an I/O subsystem with a throughput rate of 90
MiByte/s that was configured to a synchronization rate of 30 MiByte/s (R=30), and we want to
keep our target synchronization time at 4 minutes or 240 seconds (tsync=240):

Figure 17.7. Active extents calculation based on sync rate and target sync
time (example)

E = 4
30£ 240 = 1800 1801

The exact result is 1800, but since DRBD’s hash function for the implementation of the AL works
best if the number of extents is set to a prime number, we select 1801.

17.4. The�quick-sync�bitmap
The quick-sync bitmap is the internal data structure which DRBD uses, on a per-resource basis,
to keep track of blocks being in sync (identical on both nodes) or out-of sync. It is only relevant
when a resource is in disconnected mode.

In the quick-sync bitmap, one bit represents a 4-KiB chunk of on-disk data. If the bit is cleared, it
means that the corresponding block is still in sync with the peer node. That implies that the block
has not been written to since the time of disconnection. Conversely, if the bit is set, it means that
the block has been modified and needs to be re-synchronized whenever the connection becomes
available again.

As DRBD detects write I/O on a disconnected device, and hence starts setting bits in the quick-
sync bitmap, it does so in RAM — thus avoiding expensive synchronous metadata I/O operations.
Only when the corresponding blocks turn cold (that is, expire from the Activity Log [106]),
DRBD makes the appropriate modifications in an on-disk representation of the quick-sync
bitmap. Likewise, if the resource happens to be manually shut down on the remaining node while
disconnected, DRBD flushes the complete quick-sync bitmap out to persistent storage.

When the peer node recovers or the connection is re-established, DRBD combines the bitmap
information from both nodes to determine the total data set that it must re-synchronize.
Simultaneously, DRBD examines the generation identifiers [105] to determine the direction of
synchronization.

The node acting as the synchronization source then transmits the agreed-upon blocks to the
peer node, clearing sync bits in the bitmap as the synchronization target acknowledges the
modifications. If the re-synchronization is now interrupted (by another network outage, for
example) and subsequently resumed it will continue where it left off — with any additional blocks
modified in the meantime being added to the re-synchronization data set, of course.

Note

Re-synchronization may be also be paused and resumed manually with the drbdadm
pause-sync and drbdadm resume-sync commands. You should, however,
not do so light-heartedly — interrupting re-synchronization leaves your secondary
node’s disk Inconsistent longer than necessary.

17.5. The�peer�fencing�interface
DRBD has a defined interface for the mechanism that fences the peer node in case of the
replication link being interrupted. The drbd-peer-outdater helper, bundled with Heartbeat,
is the reference implementation for this interface. However, you may easily implement your own
peer fencing helper program.

The fencing helper is invoked only in case

DRBD Internals

108

1. a fence-peer handler has been defined in the resource’s (or common) handlers section,
and

2. the fencing option for the resource is set to either resource-only or resource-and-
stonith , and

3. the replication link is interrupted long enough for DRBD to detect a network failure.

The program or script specified as the fence-peer handler, when it is invoked, has the
DRBD_RESOURCE and DRBD_PEER environment variables available. They contain the name of
the affected DRBD resource and the peer’s hostname, respectively.

Any peer fencing helper program (or script) must return one of the following exit codes:

Table 17.1. fence-peer handler exit codes

Exit code Implication

3 Peer’s disk state was already Inconsistent.

4 Peer’s disk state was successfully set to
Outdated (or was Outdated to begin with).

5 Connection to the peer node failed, peer could
not be reached.

6 Peer refused to be outdated because the
affected resource was in the primary role.

7 Peer node was successfully fenced off
the cluster. This should never occur unless
fencing is set to resource-and-
stonith for the affected resource.

109

Chapter 18. Getting�more�information

18.1. Commercial�DRBD�support
Commercial DRBD support, consultancy, and training services are available from the project’s
sponsor company, LINBIT [http://www.linbit.com/].

18.2. Public�mailing�list
The public mailing list for general usage questions regarding DRBD is drbd-user@lists.linbit.com
[mailto:drbd-user@lists.linbit.com]. This is a subscribers-only mailing list, you may subscribe at
http://lists.linbit.com/drbd-user. A complete list archive is available at http://lists.linbit.com/
pipermail/drbd-user.

18.3. Public�IRC�Channels
Some of the DRBD developers can occasionally be found on the irc.freenode.net public IRC
server, particularly in the following channels:

• #drbd,

• #linux-ha,

• #linux-cluster.

Getting in touch on IRC is a good way of discussing suggestions for improvements in DRBD, and
having developer level discussions.

18.4. Blogs
• Florian Haas, one of the co-authors of this guide, maintains a technical blog [http://

blogs.linbit.com/florian].

• Martin Loschwitz a.k.a. madkiss, another LINBIT [http://www.linbit.com] employee and co-
maintainer of the Debian [http://www.debian.org] DRBD packages, keeps a personal blog
[http://blogs.linbit.com/martin] in German.

• Planet HA [http://www.planet-ha.org/] is an aggregated feed centralizing blog posts from a
number of high availability developers, technical consultants, and users.

18.5. Official�Twitter�account
LINBIT [http://www.linbit.com/] maintains an official twitter account, linbit [http://
twitter.com/linbit].

If you tweet about DRBD, please include the #drbd hashtag.

18.6. Publications
DRBD’s authors have written and published a number of papers on DRBD in general, or a specific
aspect of DRBD. Here is a short selection:

Lars Ellenberg. DRBD v8.0.x and beyond. 2007. Available at http://www.drbd.org/fileadmin/drbd/
publications/drbd8.linux-conf.eu.2007.pdf

http://www.linbit.com/
http://www.linbit.com/
mailto:drbd-user@lists.linbit.com
mailto:drbd-user@lists.linbit.com
http://lists.linbit.com/drbd-user
http://lists.linbit.com/pipermail/drbd-user
http://lists.linbit.com/pipermail/drbd-user
http://blogs.linbit.com/florian
http://blogs.linbit.com/florian
http://blogs.linbit.com/florian
http://www.linbit.com
http://www.linbit.com
http://www.debian.org
http://www.debian.org
http://blogs.linbit.com/martin
http://blogs.linbit.com/martin
http://www.planet-ha.org/
http://www.planet-ha.org/
http://www.linbit.com/
http://www.linbit.com/
http://twitter.com/linbit
http://twitter.com/linbit
http://twitter.com/linbit
http://www.drbd.org/fileadmin/drbd/publications/drbd8.linux-conf.eu.2007.pdf
http://www.drbd.org/fileadmin/drbd/publications/drbd8.linux-conf.eu.2007.pdf

Getting more information

110

Philipp Reisner. DRBD v8 - Replicated Storage with Shared Disk Semantics. 2007. Available at http://
www.drbd.org/fileadmin/drbd/publications/drbd8.pdf.

Philipp Reisner. Rapid resynchronization for replicated storage. 2006. Available at http://www.drbd.org/
fileadmin/drbd/publications/drbd-activity-logging_v6.pdf

18.7. Other�useful�resources
• Wikipedia keeps an entry on DRBD [http://en.wikipedia.org/wiki/DRBD].

• Both the Linux-HA wiki [http://wiki.linux-ha.org/] and

• ClusterLabs [http://www.clusterlabs.org] have some useful information about utilizing DRBD
in High Availability clusters.

http://www.drbd.org/fileadmin/drbd/publications/drbd8.pdf
http://www.drbd.org/fileadmin/drbd/publications/drbd8.pdf
http://www.drbd.org/fileadmin/drbd/publications/drbd-activity-logging_v6.pdf
http://www.drbd.org/fileadmin/drbd/publications/drbd-activity-logging_v6.pdf
http://en.wikipedia.org/wiki/DRBD
http://en.wikipedia.org/wiki/DRBD
http://wiki.linux-ha.org/
http://wiki.linux-ha.org/
http://www.clusterlabs.org
http://www.clusterlabs.org

Part VII. Appendices

112

Appendix A. Recent�changes
This appendix is for users who upgrade from earlier DRBD versions to DRBD 8.4. It highlights
some important changes to DRBD’s configuration and behavior.

A.1. Volumes
Volumes are a new concept in DRBD 8.4. Prior to 8.4, every resource had only one block
device associated with it, thus there was a one-to-one relationship between DRBD devices and
resources. Since 8.4, multiple volumes (each corresponding to one block device) may share a
single replication connection, which in turn corresponds to a single resource.

A.1.1. Changes�to�udev�symlinks

The DRBD udev integration scripts manage symlinks pointing to individual block device nodes.
These exist in the /dev/drbd/by-res and /dev/drbd/by-disk directories.

In DRBD 8.3 and earlier, links in /dev/drbd/by-disk point to single block devices:

udev managed DRBD symlinks in DRBD 8.3 and earlier.

lrwxrwxrwx 1 root root 11 2011-05-19 11:46 /dev/drbd/by-res/home ->
 ../../drbd0
lrwxrwxrwx 1 root root 11 2011-05-19 11:46 /dev/drbd/by-res/data ->
 ../../drbd1
lrwxrwxrwx 1 root root 11 2011-05-19 11:46 /dev/drbd/by-res/nfs-root ->
 ../../drbd2

In DRBD 8.4, since a single resource may correspond to multiple volumes, /dev/drbd/by-res/
<resource> becomes a directory, containing symlinks pointing to individual volumes:

udev managed DRBD symlinks in DRBD 8.4.

lrwxrwxrwx 1 root root 11 2011-07-04 09:22 /dev/drbd/by-res/home/0 ->
 ../../drbd0
lrwxrwxrwx 1 root root 11 2011-07-04 09:22 /dev/drbd/by-res/data/0 ->
 ../../drbd1
lrwxrwxrwx 1 root root 11 2011-07-04 09:22 /dev/drbd/by-res/nfs-root/0 ->
 ../../drbd2
lrwxrwxrwx 1 root root 11 2011-07-04 09:22 /dev/drbd/by-res/nfs-root/1 ->
 ../../drbd3

Configurations where filesystems are referred to by symlink must be updated when moving to
DRBD 8.4, usually by simply appending /0 to the symlink path.

A.2. Changes�to�the�configuration�syntax
This section highlights changes to the configuration syntax. It affects the DRBD configuration
files in /etc/drbd.d, and /etc/drbd.conf.

Important

The drbdadm parser still accepts pre-8.4 configuration syntax and automatically
translates, internally, into the current syntax. Unless you are planning to use new
features not present in prior DRBD releases, there is no requirement to modify your
configuration to the current syntax. It is, however, recommended that you eventually
adopt the new syntax, as the old format will no longer be supported in DRBD 9.

Recent changes

113

A.2.1. Boolean�configuration�options

drbd.conf supports a variety of boolean configuration options. In pre DRBD 8.4 syntax, these
boolean options would be set as follows:

Pre-DRBD 8.4 configuration example with boolean options.

resource test {
 disk {
 no-md-flushes;
 }
}

This led to configuration issues if you wanted to set a boolean variable in the common
configuration section, and then override it for individual resources:

Pre-DRBD 8.4 configuration example with boolean options in common section.

common {
 no-md-flushes;
}
resource test {
 disk {
 # No facility to enable disk flushes previously disabled in
 # "common"
 }
}

In DRBD 8.4, all boolean options take a value of yes or no, making them easily configurable both
from common and from individual resource sections:

DRBD 8.4 configuration example with boolean options in common section.

common {
 md-flushes no;
}
resource test {
 disk {
 md-flushes yes;
 }
}

A.2.2. syncer�section�no�longer�exists

Prior to DRBD 8.4, the configuration syntax allowed for a syncer section which has become
obsolete in 8.4. All previously existing syncer options have now moved into the net or disk
sections of resources.

Pre-DRBD 8.4 configuration example with syncer section.

resource test {
 syncer {
 al-extents 3389;
 verify-alg md5;
 }
 ...
}

The above example is expressed, in DRBD 8.4 syntax, as follows:

Recent changes

114

DRBD 8.4 configuration example with syncer section replaced.

resource test {
 disk {
 al-extents 3389;
 }
 net {
 verify-alg md5;
 }
 ...
}

A.2.3. protocol�option�is�no�longer�special

In prior DRBD releases, the protocol option was awkwardly (and counter-intuitively) required
to be specified on its own, rather than as part of the net section. DRBD 8.4 removes this anomaly:

Pre-DRBD 8.4 configuration example with standalone protocol option.

resource test {
 protocol C;
 ...
 net {
 ...
 }
 ...
}

The equivalent DRBD 8.4 configuration syntax is:

DRBD 8.4 configuration example with protocol option within net section.

resource test {
 net {
 protocol C;
 ...
 }
 ...
}

A.2.4. New�per-resource�options�section

DRBD 8.4 introduces a new options section that may be specified either in a resource or
in the common section. The cpu-mask option has moved into this section from the syncer
section in which it was awkwardly configured before. The on-no-data-accessible option
has also moved to this section, rather than being in disk where it had been in pre-8.4 releases.

Pre-DRBD 8.4 configuration example with cpu-mask and on-no-data-accessible.

resource test {
 syncer {
 cpu-mask ff;
 }
 disk {
 on-no-data-accessible suspend-io;
 }
 ...
}

Recent changes

115

The equivalent DRBD 8.4 configuration syntax is:

Pre-DRBD 8.4 configuration example with options section.

resource test {
 options {
 cpu-mask ff;
 on-no-data-accessible suspend-io;
 }
 ...
}

A.3. On-line�changes�to�network
communications

A.3.1. Changing�the�replication�protocol

Prior to DRBD 8.4, changes to the replication protocol were impossible while the resource was on-
line and active. You would have to change the protocol option in your resource configuration
file, then issue drbdadm disconnect and finally drbdadm connect on both nodes.

In DRBD 8.4, the replication protocol can be changed on the fly. You may, for example, temporarily
switch a connection to asynchronous replication from its normal, synchronous replication mode.

Changing replication protocol while connection is established.

drbdadm net-options --protocol=A <resource>

A.3.2. Changing�from�single-Primary�to�dual-Primary
replication

Prior to DRBD 8.4, it was impossible to switch between single-Primary to dual-Primary or
back while the resource was on-line and active. You would have to change the allow-two-
primaries option in your resource configuration file, then issue drbdadm disconnect and
finally drbdadm connect on both nodes.

In DRBD 8.4, it is possible to switch modes on-line.

Caution

It is required for an application using DRBD dual-Primary mode to use a clustered
file system or some other distributed locking mechanism. This applies regardless of
whether dual-Primary mode is enabled on a temporary or permanent basis.

Refer to Section 6.5.2, “Temporary dual-primary mode” [38] for switching to dual-Primary mode
while the resource is on-line.

A.4. Changes�to�the�drbdadm�command

A.4.1. Changes�to�pass-through�options

Prior to DRBD 8.4, if you wanted drbdadm to pass special options through to drbdsetup, you
had to use the arcane -- --<option> syntax, as in the following example:

Pre-DRBD 8.4 drbdadm pass-through options.

Recent changes

116

drbdadm -- --discard-my-data connect <resource>

Instead, drbdadm now accepts those pass-through options as normal options:

DRBD 8.4 drbdadm pass-through options.

drbdadm connect --discard-my-data <resource>

Note

The old syntax is still supported, but its use is strongly discouraged. However, if
you choose to use the new, more straightforward syntax, you must specify the
option (--discard-my-data) after the subcommand (connect) and before the
resource identifier.

A.4.2. --force�option�replaces�--overwrite-data-
of-peer

The --overwrite-data-of-peer option is no longer present in DRBD 8.4. It has been
replaced by the simpler --force. Thus, to kick off an initial resource synchronization, you no
longer use the following command:

Pre-DRBD 8.4 initial sync drbdadm commands.

drbdadm -- --overwrite-data-of-peer primary <resource>

Use the command below instead:

DRBD 8.4 initial sync drbdadm commands.

drbdadm primary --force <resource>

A.5. Changed�default�values
In DRBD 8.4, several drbd.conf default values have been updated to match improvements in
the Linux kernel and available server hardware.

A.5.1. Number�of�concurrently�active�Activity�Log
extents�(al-extents)

al-extents' previous default of 127 has changed to 1237, allowing for better performance
by reducing the amount of metadata disk write operations. The associated extended
resynchronization time after a primary node crash, which this change introduces, is marginal given
the ubiquity of Gigabit Ethernet and higher-bandwidth replication links.

A.5.2. Run-length�encoding�(use-rle)

Run-length encoding (RLE) for bitmap transfers is enabled by default in DRBD 8.4; the default
for the use-rle option is yes. RLE greatly reduces the amount of data transferred during the
quick-sync bitmap [107] exchange (which occurs any time two disconnected nodes reconnect).

A.5.3. I/O�error�handling�strategy�(on-io-error)

DRBD 8.4 defaults to masking I/O errors [10], which replaces the earlier behavior of passing
them on [10] to upper layers in the I/O stack. This means that a DRBD volume operating on a

Recent changes

117

faulty drive automatically switches to the Diskless disk state and continues to serve data from
its peer node.

A.5.4. Variable-rate�synchronization

Variable-rate synchronization [7] is on by default in DRBD 8.4. The default settings are equivalent
to the following configuration options:

DRBD 8.4 default options for variable-rate synchronization.

resource test {
 net {
 c-plan-ahead 20;
 c-fill-target 50k;
 c-min-rate 250k;
 }
 ...

A.5.5. Number�of�configurable�DRBD�devices�(minor-
count)

The maximum number of configurable DRBD devices (previously 255) is 1,048,576 (220) in
DRBD 8.4. This is more of a theoretical limit that is unlikely to be reached in production systems.

118

Appendix B. DRBD�system�manual
pages

DRBD system manual pages

119

Name
drbd.conf — Configuration file for DRBD's devices

Introduction

The file /etc/drbd.conf is read by drbdadm.

The file format was designed as to allow to have a verbatim copy of the file on both nodes of
the cluster. It is highly recommended to do so in order to keep your configuration manageable.
The file /etc/drbd.conf should be the same on both nodes of the cluster. Changes to /etc/
drbd.conf do not apply immediately.

By convention the main config contains two include statements. The first one includes the file /
etc/drbd.d/global_common.conf, the second one all file with a .res suffix.

Example B.1. A small example.res file

resource r0 {
 net {
 protocol C;
 cram-hmac-alg sha1;
 shared-secret "FooFunFactory";
 }
 disk {
 resync-rate 10M;
 }
 on alice {
 volume 0 {
 device minor 1;
 disk /dev/sda7;
 meta-disk internal;
 }
 address 10.1.1.31:7789;
 }
 on bob {
 volume 0 {
 device minor 1;
 disk /dev/sda7;
 meta-disk internal;
 }
 address 10.1.1.32:7789;
 }
}

In this example, there is a single DRBD resource (called r0) which uses protocol C for the
connection between its devices. It contains a single volume which runs on host alice uses /
dev/drbd1 as devices for its application, and /dev/sda7 as low-level storage for the data.
The IP addresses are used to specify the networking interfaces to be used. An eventually running
resync process should use about 10MByte/second of IO bandwidth. This sync-rate statement
is valid for volume 0, but would also be valid for further volumes. In this example it assigns full
10MByte/second to each volume.

There may be multiple resource sections in a single drbd.conf file. For more examples, please have
a look at the DRBD User's Guide [http://www.drbd.org/users-guide/].

http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide/

DRBD system manual pages

120

File�Format

The file consists of sections and parameters. A section begins with a keyword, sometimes an
additional name, and an opening brace (“{”). A section ends with a closing brace (“}”. The braces
enclose the parameters.

section [name] { parameter value; [...] }

A parameter starts with the identifier of the parameter followed by whitespace. Every subsequent
character is considered as part of the parameter's value. A special case are Boolean parameters
which consist only of the identifier. Parameters are terminated by a semicolon (“;”).

Some parameter values have default units which might be overruled by K, M or G. These units
are defined in the usual way (K = 2^10 = 1024, M = 1024 K, G = 1024 M).

Comments may be placed into the configuration file and must begin with a hash sign (“#”).
Subsequent characters are ignored until the end of the line.

Sections

skip Comments out chunks of text, even spanning more than
one line. Characters between the keyword skip and the
opening brace (“{”) are ignored. Everything enclosed by the
braces is skipped. This comes in handy, if you just want to
comment out some 'resource [name] {...}' section:
just precede it with '“skip”'.

global Configures some global parameters. Currently
only minor-count, dialog-refresh, disable-ip-
verification and usage-count are allowed here. You
may only have one global section, preferably as the first
section.

common All resources inherit the options set in this section. The
common section might have a startup, a options, a
handlers, a net and a disk section.

resource name Configures a DRBD resource. Each resource section needs
to have two (or more) on host sections and may have
a startup, a options, a handlers, a net and a disk
section. It might contain volumes sections.

on host-name Carries the necessary configuration parameters for a DRBD
device of the enclosing resource. host-name is mandatory
and must match the Linux host name (uname -n) of one of
the nodes. You may list more than one host name here, in
case you want to use the same parameters on several hosts
(you'd have to move the IP around usually). Or you may list
more than two such sections.

 resource r1 {
 protocol C;
 device minor 1;
 meta-disk internal;

 on alice bob {
 address 10.2.2.100:7801;
 disk /dev/mapper/some-san;
 }
 on charlie {

DRBD system manual pages

121

 address 10.2.2.101:7801;
 disk /dev/mapper/other-san;
 }
 on daisy {
 address 10.2.2.103:7801;
 disk /dev/mapper/other-san-as-seen-from-daisy;
 }
 }

See also the floating section keyword. Required
statements in this section: address and volume. Note for
backward compatibility and convenience it is valid to embed
the statements of a single volume directly into the host
section.

volume vnr Defines a volume within a connection. The minor numbers
of a replicated volume might be different on different hosts,
the volume number (vnr) is what groups them together.
Required parameters in this section: device, disk, meta-
disk.

stacked-on-top-of
resource

 For a stacked DRBD setup (3 or 4 nodes), a stacked-
on-top-of is used instead of an on section. Required
parameters in this section: device and address.

floating AF addr:port Carries the necessary configuration parameters for a DRBD
device of the enclosing resource. This section is very similar
to the on section. The difference to the on section is that the
matching of the host sections to machines is done by the IP-
address instead of the node name. Required parameters in
this section: device, disk, meta-disk, all of which may
be inherited from the resource section, in which case you
may shorten this section down to just the address identifier.

 resource r2 {
 protocol C;
 device minor 2;
 disk /dev/sda7;
 meta-disk internal;

 # short form, device, disk and meta-disk inherited
 floating 10.1.1.31:7802;

 # longer form, only device inherited
 floating 10.1.1.32:7802 {
 disk /dev/sdb;
 meta-disk /dev/sdc8;
 }
 }

disk This section is used to fine tune DRBD's properties
in respect to the low level storage. Please refer
to drbdsetup(8) for detailed description of the
parameters. Optional parameters: on-io-error, size,
fencing, disk-barrier, disk-flushes, disk-
drain, md-flushes, max-bio-bvecs, resync-
rate, resync-after, al-extents, c-plan-ahead,

DRBD system manual pages

122

c-fill-target, c-delay-target, c-max-rate, c-
min-rate, disk-timeout.

net This section is used to fine tune DRBD's
properties. Please refer to drbdsetup(8) for a
detailed description of this section's parameters.
Optional parameters: protocol, sndbuf-size,
rcvbuf-size, timeout, connect-int, ping-int,
ping-timeout, max-buffers, max-epoch-size,
ko-count, allow-two-primaries, cram-hmac-
alg, shared-secret, after-sb-0pri, after-
sb-1pri, after-sb-2pri, data-integrity-alg,
no-tcp-cork, on-congestion, congestion-fill,
congestion-extents, verify-alg, use-rle,
csums-alg.

startup This section is used to fine tune DRBD's properties.
Please refer to drbdsetup(8) for a detailed description
of this section's parameters. Optional parameters:
wfc-timeout, degr-wfc-timeout, outdated-wfc-
timeout, wait-after-sb, stacked-timeouts and
become-primary-on.

options This section is used to fine tune the behaviour
of the resource object. Please refer to drbdsetup(8)
for a detailed description of this section's parameters.
Optional parameters: cpu-mask, and on-no-data-
accessible.

handlers In this section you can define handlers (executables)
that are started by the DRBD system in response to
certain events. Optional parameters: pri-on-incon-
degr, pri-lost-after-sb, pri-lost, fence-
peer (formerly oudate-peer), local-io-error,
initial-split-brain, split-brain, before-
resync-target, after-resync-target.

The interface is done via environment variables:

• DRBD_RESOURCE is the name of the resource

• DRBD_MINOR is the minor number of the DRBD device,
in decimal.

• DRBD_CONF is the path to the primary configuration file;
if you split your configuration into multiple files (e.g. in /
etc/drbd.conf.d/), this will not be helpful.

• DRBD_PEER_AF , DRBD_PEER_ADDRESS ,
DRBD_PEERS are the address family (e.g. ipv6), the
peer's address and hostnames.

DRBD_PEER is deprecated.

Please note that not all of these might be set for all handlers,
and that some values might not be useable for a floating
definition.

Parameters

minor-count count count may be a number from 1 to FIXME.

DRBD system manual pages

123

Minor-count is a sizing hint for DRBD. It helps to right-
size various memory pools. It should be set in the in the same
order of magnitude than the actual number of minors you
use. Per default the module loads with 11 more resources
than you have currently in your config but at least 32.

dialog-refresh time time may be 0 or a positive number.

The user dialog redraws the second count every time
seconds (or does no redraws if time is 0). The default value
is 1.

disable-ip-verification
Use disable-ip-verification if, for some obscure
reasons, drbdadm can/might not use ip or ifconfig to
do a sanity check for the IP address. You can disable the IP
verification with this option.

usage-count val
Please participate in DRBD's online usage counter [http://
usage.drbd.org]. The most convenient way to do so is to set
this option to yes. Valid options are: yes, no and ask.

protocol prot-id
On the TCP/IP link the specified protocol is used. Valid
protocol specifiers are A, B, and C.

Protocol A: write IO is reported as completed, if it has
reached local disk and local TCP send buffer.

Protocol B: write IO is reported as completed, if it has
reached local disk and remote buffer cache.

Protocol C: write IO is reported as completed, if it has
reached both local and remote disk.

device name minor nr The name of the block device node of the resource being
described. You must use this device with your application
(file system) and you must not use the low level block device
which is specified with the disk parameter.

One can ether omit the name or minor and the minor
number. If you omit the name a default of /dev/drbdminor
will be used.

Udev will create additional symlinks in /dev/drbd/by-res
and /dev/drbd/by-disk.

disk name DRBD uses this block device to actually store and retrieve
the data. Never access such a device while DRBD is running
on top of it. This also holds true for dumpe2fs(8) and similar
commands.

address AF addr:port A resource needs one IP address per device, which is
used to wait for incoming connections from the partner
device respectively to reach the partner device. AF must
be one of ipv4, ipv6, ssocks or sdp (for compatibility
reasons sci is an alias for ssocks). It may be omited
for IPv4 addresses. The actual IPv6 address that follows
the ipv6 keyword must be placed inside brackets: ipv6
[fd01:2345:6789:abcd::1]:7800.

http://usage.drbd.org
http://usage.drbd.org
http://usage.drbd.org

DRBD system manual pages

124

Each DRBD resource needs a TCP port which is used to
connect to the node's partner device. Two different DRBD
resources may not use the same addr:port combination
on the same node.

meta-disk internal, meta-
disk device, meta-disk
device [index]

 Internal means that the last part of the backing device is
used to store the meta-data. The size of the meta-data is
computed based on the size of the device.

When a device is specified, either with or without an
index, DRBD stores the meta-data on this device. Without
index, the size of the meta-data is determined by the size
of the data device. This is usually used with LVM, which
allows to have many variable sized block devices. The meta-
data size is 36kB + Backing-Storage-size / 32k, rounded up
to the next 4kb boundary. (Rule of the thumb: 32kByte per
1GByte of storage, rounded up to the next MB.)

When an index is specified, each index number refers to a
fixed slot of meta-data of 128 MB, which allows a maximum
data size of 4 GB. This way, multiple DBRD devices can share
the same meta-data device. For example, if /dev/sde6[0]
and /dev/sde6[1] are used, /dev/sde6 must be at least 256
MB big. Because of the hard size limit, use of meta-disk
indexes is discouraged.

on-io-error handler handler is taken, if the lower level device reports io-errors
to the upper layers.

handler may be pass_on, call-local-io-error or
detach.

pass_on: The node downgrades the disk status to
inconsistent, marks the erroneous block as inconsistent in
the bitmap and retries the IO on the remote node.

call-local-io-error: Call the handler script local-
io-error.

detach: The node drops its low level device, and continues
in diskless mode.

fencing fencing_policy By fencing we understand preventive measures to avoid
situations where both nodes are primary and disconnected
(AKA split brain).

Valid fencing policies are:

dont-care This is the default policy. No
fencing actions are taken.

resource-only If a node becomes a
disconnected primary, it
tries to fence the peer's
disk. This is done by calling
the fence-peer handler.
The handler is supposed to
reach the other node over
alternative communication

DRBD system manual pages

125

paths and call 'drbdadm
outdate res' there.

resource-and-stonith If a node becomes a
disconnected primary, it
freezes all its IO operations
and calls its fence-peer
handler. The fence-peer
handler is supposed to reach
the peer over alternative
communication paths and
call 'drbdadm outdate res'
there. In case it cannot reach
the peer it should stonith the
peer. IO is resumed as soon
as the situation is resolved.
In case your handler fails,
you can resume IO with the
resume-io command.

disk-barrier, disk-
flushes, disk-drain

md-flushes
Disables the use of disk flushes and barrier BIOs when
accessing the meta data device. See the notes on disk-
flushes.

max-bio-bvecs
In some special circumstances the device mapper stack
manages to pass BIOs to DRBD that violate the constraints
that are set forth by DRBD's merge_bvec() function and
which have more than one bvec. A known example is: phys-
disk -> DRBD -> LVM -> Xen -> misaligned partition (63)
-> DomU FS. Then you might see "bio would need to, but
cannot, be split:" in the Dom0's kernel log.

The best workaround is to proper align the partition within
the VM (E.g. start it at sector 1024). This costs 480
KiB of storage. Unfortunately the default of most Linux
partitioning tools is to start the first partition at an odd
number (63). Therefore most distribution's install helpers
for virtual linux machines will end up with misaligned
partitions. The second best workaround is to limit DRBD's
max bvecs per BIO (= max-bio-bvecs) to 1, but that
might cost performance.

The default value of max-bio-bvecs is 0, which means
that there is no user imposed limitation.

disk-timeout
If the driver of the lower_device does not finish an IO
request within disk_timeout, DRBD considers the disk
as failed. If DRBD is connected to a remote host, it will
reissue local pending IO requests to the peer, and ship all
new IO requests to the peer only. The disk state advances
to diskless, as soon as the backing block device has finished
all IO requests.

The default value of is 0, which means that no timeout is
enforced. The default unit is 100ms. This option is available
since 8.3.12.

DRBD system manual pages

126

sndbuf-size size size is the size of the TCP socket send buffer. The default
value is 0, i.e. autotune. You can specify smaller or larger
values. Larger values are appropriate for reasonable write
throughput with protocol A over high latency networks.
Values below 32K do not make sense. Since 8.0.13 resp.
8.2.7, setting the size value to 0 means that the kernel
should autotune this.

rcvbuf-size size size is the size of the TCP socket receive buffer. The
default value is 0, i.e. autotune. You can specify smaller or
larger values. Usually this should be left at its default. Setting
the size value to 0 means that the kernel should autotune
this.

timeout time If the partner node fails to send an expected response
packet within time tenths of a second, the partner node
is considered dead and therefore the TCP/IP connection is
abandoned. This must be lower than connect-int and
ping-int. The default value is 60 = 6 seconds, the unit
0.1 seconds.

connect-int time In case it is not possible to connect to the remote DRBD
device immediately, DRBD keeps on trying to connect. With
this option you can set the time between two retries. The
default value is 10 seconds, the unit is 1 second.

ping-int time If the TCP/IP connection linking a DRBD device pair is idle
for more than time seconds, DRBD will generate a keep-
alive packet to check if its partner is still alive. The default is
10 seconds, the unit is 1 second.

ping-timeout time The time the peer has time to answer to a keep-alive packet.
In case the peer's reply is not received within this time
period, it is considered as dead. The default value is 500ms,
the default unit are tenths of a second.

max-buffers number Maximum number of requests to be allocated by DRBD. Unit
is PAGE_SIZE, which is 4 KiB on most systems. The minimum
is hard coded to 32 (=128 KiB). For high-performance
installations it might help if you increase that number. These
buffers are used to hold data blocks while they are written
to disk.

ko-count number In case the secondary node fails to complete a single write
request for count times the timeout, it is expelled from
the cluster. (I.e. the primary node goes into StandAlone
mode.) The default value is 0, which disables this feature.

max-epoch-size number The highest number of data blocks between two write
barriers. If you set this smaller than 10, you might decrease
your performance.

allow-two-primaries With this option set you may assign the primary role to both
nodes. You only should use this option if you use a shared
storage file system on top of DRBD. At the time of writing
the only ones are: OCFS2 and GFS. If you use this option with
any other file system, you are going to crash your nodes and
to corrupt your data!

unplug-watermark number

DRBD system manual pages

127

When the number of pending write requests on the standby
(secondary) node exceeds the unplug-watermark, we
trigger the request processing of our backing storage
device. Some storage controllers deliver better performance
with small values, others deliver best performance when the
value is set to the same value as max-buffers. Minimum 16,
default 128, maximum 131072.

cram-hmac-alg You need to specify the HMAC algorithm to enable peer
authentication at all. You are strongly encouraged to use
peer authentication. The HMAC algorithm will be used for
the challenge response authentication of the peer. You may
specify any digest algorithm that is named in /proc/
crypto.

shared-secret The shared secret used in peer authentication. May be up
to 64 characters. Note that peer authentication is disabled
as long as no cram-hmac-alg (see above) is specified.

after-sb-0pri policy
possible policies are:

disconnect No automatic
resynchronization,
simply disconnect.

discard-younger-primary Auto sync from the
node that was primary
before the split-brain
situation happened.

discard-older-primary Auto sync from the
node that became
primary as second
during the split-brain
situation.

discard-zero-changes In case one node
did not write anything
since the split brain
became evident, sync
from the node that
wrote something to the
node that did not write
anything. In case none
wrote anything this
policy uses a random
decision to perform a
"resync" of 0 blocks. In
case both have written
something this policy
disconnects the nodes.

discard-least-changes Auto sync from the
node that touched more
blocks during the split
brain situation.

DRBD system manual pages

128

discard-node-NODENAME Auto sync to the named
node.

after-sb-1pri policy
possible policies are:

disconnect No automatic
resynchronization, simply
disconnect.

consensus Discard the version of
the secondary if the
outcome of the after-
sb-0pri algorithm
would also destroy the
current secondary's data.
Otherwise disconnect.

violently-as0p Always take the decision
of the after-sb-0pri
algorithm, even if that
causes an erratic change
of the primary's view of
the data. This is only
useful if you use a one-
node FS (i.e. not OCFS2
or GFS) with the allow-
two-primaries flag,
AND if you really know
what you are doing. This
is DANGEROUS and MAY
CRASH YOUR MACHINE if
you have an FS mounted
on the primary node.

discard-secondary Discard the secondary's
version.

call-pri-lost-after-sb Always honor the
outcome of the after-
sb-0pri algorithm.
In case it decides
the current secondary
has the right data, it
calls the "pri-lost-after-
sb" handler on the current
primary.

after-sb-2pri policy
possible policies are:

disconnect No automatic
resynchronization, simply
disconnect.

violently-as0p Always take the decision
of the after-sb-0pri
algorithm, even if that
causes an erratic change

DRBD system manual pages

129

of the primary's view of
the data. This is only
useful if you use a one-
node FS (i.e. not OCFS2
or GFS) with the allow-
two-primaries flag,
AND if you really know
what you are doing. This
is DANGEROUS and MAY
CRASH YOUR MACHINE if
you have an FS mounted
on the primary node.

call-pri-lost-after-sb Call the "pri-lost-after-
sb" helper program on
one of the machines. This
program is expected to
reboot the machine, i.e.
make it secondary.

always-asbp Normally the automatic after-split-brain policies are only
used if current states of the UUIDs do not indicate the
presence of a third node.

With this option you request that the automatic after-split-
brain policies are used as long as the data sets of the nodes
are somehow related. This might cause a full sync, if the
UUIDs indicate the presence of a third node. (Or double
faults led to strange UUID sets.)

rr-conflict policy
This option helps to solve the cases when the outcome of
the resync decision is incompatible with the current role
assignment in the cluster.

disconnect No automatic resynchronization,
simply disconnect.

violently Sync to the primary node is allowed,
violating the assumption that data on a
block device are stable for one of the
nodes. Dangerous, do not use.

call-pri-lost Call the "pri-lost" helper program on
one of the machines. This program is
expected to reboot the machine, i.e.
make it secondary.

data-integrity-alg alg
DRBD can ensure the data integrity of the user's data on the
network by comparing hash values. Normally this is ensured
by the 16 bit checksums in the headers of TCP/IP packets.

This option can be set to any of the kernel's data digest
algorithms. In a typical kernel configuration you should have
at least one of md5, sha1, and crc32c available. By default
this is not enabled.

See also the notes on data integrity.

DRBD system manual pages

130

tcp-cork
DRBD usually uses the TCP socket option TCP_CORK to
hint to the network stack when it can expect more data,
and when it should flush out what it has in its send queue.
It turned out that there is at least one network stack
that performs worse when one uses this hinting method.
Therefore we introducted this option. By setting tcp-
cork to no you can disable the setting and clearing of the
TCP_CORK socket option by DRBD.

on-congestion
congestion_policy,
congestion-fill
fill_threshold,
congestion-extents
active_extents_threshold

By default DRBD blocks when the available TCP send queue
becomes full. That means it will slow down the application
that generates the write requests that cause DRBD to send
more data down that TCP connection.

When DRBD is deployed with DRBD-proxy it might be more
desirable that DRBD goes into AHEAD/BEHIND mode shortly
before the send queue becomes full. In AHEAD/BEHIND
mode DRBD does no longer replicate data, but still keeps the
connection open.

The advantage of the AHEAD/BEHIND mode is that the
application is not slowed down, even if DRBD-proxy's buffer
is not sufficient to buffer all write requests. The downside
is that the peer node falls behind, and that a resync will be
necessary to bring it back into sync. During that resync the
peer node will have an inconsistent disk.

Available congestion_policys are block and pull-
ahead. The default is block. Fill_threshold might
be in the range of 0 to 10GiBytes. The default is 0 which
disables the check. Active_extents_threshold has
the same limits as al-extents.

The AHEAD/BEHIND mode and its settings are available
since DRBD 8.3.10.

wfc-timeout time Wait for connection timeout. The init script drbd(8) blocks
the boot process until the DRBD resources are connected.
When the cluster manager starts later, it does not see a
resource with internal split-brain. In case you want to limit
the wait time, do it here. Default is 0, which means unlimited.
The unit is seconds.

degr-wfc-timeout time Wait for connection timeout, if this node was a degraded
cluster. In case a degraded cluster (= cluster with only one
node left) is rebooted, this timeout value is used instead of
wfc-timeout, because the peer is less likely to show up in
time, if it had been dead before. Value 0 means unlimited.

outdated-wfc-timeout
time

 Wait for connection timeout, if the peer was outdated. In
case a degraded cluster (= cluster with only one node left)
with an outdated peer disk is rebooted, this timeout value
is used instead of wfc-timeout, because the peer is not
allowed to become primary in the meantime. Value 0 means
unlimited.

wait-after-sb By setting this option you can make the init script to
continue to wait even if the device pair had a split brain
situation and therefore refuses to connect.

DRBD system manual pages

131

become-primary-on node-
name

Sets on which node the device should be promoted to
primary role by the init script. The node-name might
either be a host name or the keyword both. When this
option is not set the devices stay in secondary role on both
nodes. Usually one delegates the role assignment to a cluster
manager (e.g. heartbeat).

stacked-timeouts Usually wfc-timeout and degr-wfc-timeout are
ignored for stacked devices, instead twice the amount of
connect-int is used for the connection timeouts. With
the stacked-timeouts keyword you disable this, and
force DRBD to mind the wfc-timeout and degr-wfc-
timeout statements. Only do that if the peer of the
stacked resource is usually not available or will usually not
become primary. By using this option incorrectly, you run the
risk of causing unexpected split brain.

resync-rate rate To ensure a smooth operation of the application on top of
DRBD, it is possible to limit the bandwidth which may be
used by background synchronizations. The default is 250
KB/sec, the default unit is KB/sec. Optional suffixes K, M, G
are allowed.

use-rle During resync-handshake, the dirty-bitmaps of the nodes
are exchanged and merged (using bit-or), so the nodes will
have the same understanding of which blocks are dirty. On
large devices, the fine grained dirty-bitmap can become
large as well, and the bitmap exchange can take quite some
time on low-bandwidth links.

Because the bitmap typically contains compact areas where
all bits are unset (clean) or set (dirty), a simple run-length
encoding scheme can considerably reduce the network
traffic necessary for the bitmap exchange.

For backward compatibilty reasons, and because on fast
links this possibly does not improve transfer time but
consumes cpu cycles, this defaults to off.

resync-after res-name By default, resynchronization of all devices would run
in parallel. By defining a resync-after dependency, the
resynchronization of this resource will start only if the
resource res-name is already in connected state (i.e., has
finished its resynchronization).

al-extents extents DRBD automatically performs hot area detection. With this
parameter you control how big the hot area (= active set)
can get. Each extent marks 4M of the backing storage (=
low-level device). In case a primary node leaves the cluster
unexpectedly, the areas covered by the active set must
be resynced upon rejoining of the failed node. The data
structure is stored in the meta-data area, therefore each
change of the active set is a write operation to the meta-
data device. A higher number of extents gives longer resync
times but less updates to the meta-data. The default number
of extents is 127. (Minimum: 7, Maximum: 3843)

verify-alg hash-alg During online verification (as initiated by the verify sub-
command), rather than doing a bit-wise comparison, DRBD

DRBD system manual pages

132

applies a hash function to the contents of every block being
verified, and compares that hash with the peer. This option
defines the hash algorithm being used for that purpose. It
can be set to any of the kernel's data digest algorithms. In
a typical kernel configuration you should have at least one
of md5, sha1, and crc32c available. By default this is not
enabled; you must set this option explicitly in order to be
able to use on-line device verification.

See also the notes on data integrity.

csums-alg hash-alg A resync process sends all marked data blocks from the
source to the destination node, as long as no csums-alg is
given. When one is specified the resync process exchanges
hash values of all marked blocks first, and sends only those
data blocks that have different hash values.

This setting is useful for DRBD setups with low bandwidth
links. During the restart of a crashed primary node, all blocks
covered by the activity log are marked for resync. But a large
part of those will actually be still in sync, therefore using
csums-alg will lower the required bandwidth in exchange
for CPU cycles.

c-plan-ahead plan_time,
c-fill-target
fill_target, c-delay-
target delay_target, c-
max-rate max_rate

The dynamic resync speed controller gets enabled with
setting plan_time to a positive value. It aims to fill the
buffers along the data path with either a constant amount
of data fill_target, or aims to have a constant delay
time of delay_target along the path. The controller has
an upper bound of max_rate.

By plan_time the agility of the controller is configured.
Higher values yield for slower/lower responses of the
controller to deviation from the target value. It should be at
least 5 times RTT. For regular data paths a fill_target
in the area of 4k to 100k is appropriate. For a setup that
contains drbd-proxy it is advisable to use delay_target
instead. Only when fill_target is set to 0 the controller
will use delay_target. 5 times RTT is a reasonable
starting value. Max_rate should be set to the bandwidth
available between the DRBD-hosts and the machines
hosting DRBD-proxy, or to the available disk-bandwidth.

The default value of plan_time is 0, the default unit is 0.1
seconds. Fill_target has 0 and sectors as default unit.
Delay_target has 1 (100ms) and 0.1 as default unit.
Max_rate has 10240 (100MiB/s) and KiB/s as default
unit.

The dynamic resync speed controller and its settings are
available since DRBD 8.3.9.

c-min-rate min_rate A node that is primary and sync-source has to schedule
application IO requests and resync IO requests. The
min_rate tells DRBD use only up to min_rate for resync
IO and to dedicate all other available IO bandwidth to
application requests.

Note: The value 0 has a special meaning. It disables the
limitation of resync IO completely, which might slow down

DRBD system manual pages

133

application IO considerably. Set it to a value of 1, if you
prefer that resync IO never slows down application IO.

Note: Although the name might suggest that it is a lower
bound for the dynamic resync speed controller, it is not. If
the DRBD-proxy buffer is full, the dynamic resync speed
controller is free to lower the resync speed down to 0,
completely independent of the c-min-rate setting.

Min_rate has 4096 (4MiB/s) and KiB/s as default unit.

on-no-data-accessible
ond-policy

This setting controls what happens to IO requests on a
degraded, disk less node (I.e. no data store is reachable). The
available policies are io-error and suspend-io.

If ond-policy is set to suspend-io you can either
resume IO by attaching/connecting the last lost data
storage, or by the drbdadm resume-io res command. The
latter will result in IO errors of course.

The default is io-error. This setting is available since
DRBD 8.3.9.

cpu-mask cpu-mask Sets the cpu-affinity-mask for DRBD's kernel threads of
this device. The default value of cpu-mask is 0, which
means that DRBD's kernel threads should be spread over
all CPUs of the machine. This value must be given in
hexadecimal notation. If it is too big it will be truncated.

pri-on-incon-degr cmd This handler is called if the node is primary, degraded and if
the local copy of the data is inconsistent.

pri-lost-after-sb cmd The node is currently primary, but lost the after-split-brain
auto recovery procedure. As as consequence, it should be
abandoned.

pri-lost cmd The node is currently primary, but DRBD's algorithm thinks
that it should become sync target. As a consequence it
should give up its primary role.

fence-peer cmd The handler is part of the fencing mechanism. This
handler is called in case the node needs to fence the peer's
disk. It should use other communication paths than DRBD's
network link.

local-io-error cmd DRBD got an IO error from the local IO subsystem.

initial-split-brain cmd DRBD has connected and detected a split brain situation.
This handler can alert someone in all cases of split brain, not
just those that go unresolved.

split-brain cmd DRBD detected a split brain situation but remains
unresolved. Manual recovery is necessary. This handler
should alert someone on duty.

before-resync-target cmd DRBD calls this handler just before a resync begins on the
node that becomes resync target. It might be used to take a
snapshot of the backing block device.

after-resync-target cmd DRBD calls this handler just after a resync operation finished
on the node whose disk just became consistent after being

DRBD system manual pages

134

inconsistent for the duration of the resync. It might be used
to remove a snapshot of the backing device that was created
by the before-resync-target handler.

Other�Keywords

include file-pattern Include all files matching the wildcard pattern file-pattern.
The include statement is only allowed on the top level, i.e. it is
not allowed inside any section.

Notes�on�data�integrity

There are two independent methods in DRBD to ensure the integrity of the mirrored data. The
online-verify mechanism and the data-integrity-alg of the network section.

Both mechanisms might deliver false positives if the user of DRBD modifies the data which gets
written to disk while the transfer goes on. This may happen for swap, or for certain append while
global sync, or truncate/rewrite workloads, and not necessarily poses a problem for the integrity
of the data. Usually when the initiator of the data transfer does this, it already knows that that
data block will not be part of an on disk data structure, or will be resubmitted with correct data
soon enough.

The data-integrity-alg causes the receiving side to log an error about "Digest integrity
check FAILED: Ns +x\n", where N is the sector offset, and x is the size of the request in bytes. It
will then disconnect, and reconnect, thus causing a quick resync. If the sending side at the same
time detected a modification, it warns about "Digest mismatch, buffer modified by upper layers
during write: Ns +x\n", which shows that this was a false positive. The sending side may detect
these buffer modifications immediately after the unmodified data has been copied to the tcp
buffers, in which case the receiving side won't notice it.

The most recent (2007) example of systematic corruption was an issue with the TCP offloading
engine and the driver of a certain type of GBit NIC. The actual corruption happened on the DMA
transfer from core memory to the card. Since the TCP checksum gets calculated on the card, this
type of corruption stays undetected as long as you do not use either the online verify or the
data-integrity-alg.

We suggest to use the data-integrity-alg only during a pre-production phase due to its
CPU costs. Further we suggest to do online verify runs regularly e.g. once a month during a
low load period.

Version

This document was revised for version 8.4.0 of the DRBD distribution.

Author

Written by Philipp Reisner <philipp.reisner@linbit.com> and Lars Ellenberg
<lars.ellenberg@linbit.com>.

Reporting�Bugs

Report bugs to <drbd-user@lists.linbit.com>.

Copyright

Copyright 2001-2008 LINBIT Information Technologies, Philipp Reisner, Lars Ellenberg. This
is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

DRBD system manual pages

135

See�Also

drbd(8), drbddisk(8), drbdsetup(8), drbdadm(8), DRBD User's Guide [http://www.drbd.org/
users-guide/], DRBD web site [http://www.drbd.org/]

http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide/
http://www.drbd.org/
http://www.drbd.org/

DRBD system manual pages

136

Name
drbdadm — Administration tool for DRBD

Synopsis

drbdadm [-d] [-c{file}] [-t{file}] [-s{cmd}] [-m{cmd}] [-S] [-h{host}] [--{backend-
options}] {command} [{all} | {resource[/volume>]...}]

Description

Drbdadm is the high level tool of the DRBD program suite. Drbdadm is to drbdsetup and
drbdmeta what ifup/ifdown is to ifconfig. Drbdadm reads its configuration file and
performs the specified commands by calling the drbdsetup and/or the drbdmeta program.

Drbdadm can operate on whole resources or on individual volumes in a resource. The
sub commands: attach, detach, primary, secondary, invalidate, invalidate-
remote, outdate, resize, verify, pause-sync, resume-sync, role, csytate,
dstate, create-md, show-gi, get-gi, dump-md, wipe-md are work on whole resources
and on individual volumes.

Resource level only commands are: connect, disconnect, up, down, wait-connect and
dump.

Options

-d, --dry-run Just prints the calls of drbdsetup to stdout, but does not
run the commands.

-c, --config-file file Specifies the configuration file drbdadm will use. If
this parameter is not specified, drbdadm will look for
/etc/drbd-84.conf, /etc/drbd-83.conf, /etc/
drbd-08.conf and /etc/drbd.conf.

-t, --config-to-test file Specifies an additional configuration file drbdadm to check.
This option is only allowed with the dump and the sh-nop
commands.

-s, --drbdsetup file Specifies the full path to the drbdsetup program. If
this option is omitted, drbdadm will look for /sbin/
drbdsetup and ./drbdsetup.

-m, --drbdmeta file Specifies the full path to the drbdmeta program. If this
option is omitted, drbdadm will look for /sbin/drbdmeta
and ./drbdmeta.

-S, --stacked Specifies that this command should be performed on a
stacked resource.

-P, --peer Specifies to which peer node to connect. Only necessary if
there are more than two host sections in the resource you
are working on.

-- backend-options All options following the doubly hyphen are considered
backend-options. These are passed through to the
backend command. I.e. to drbdsetup, drbdmeta or
drbd-proxy-ctl.

DRBD system manual pages

137

Commands

attach Attaches a local backing block device to the DRBD resource's device.

detach Removes the backing storage device from a DRBD resource's device.

connect Sets up the network configuration of the resource's device. If the peer
device is already configured, the two DRBD devices will connect. If
there are more than two host sections in the resource you need to use
the --peer option to select the peer you want to connect to.

disconnect Removes the network configuration from the resource. The device will
then go into StandAlone state.

syncer Loads the resynchronization parameters into the device.

up Is a shortcut for attach and connect.

down Is a shortcut for disconnect and detach.

primary Promote the resource's device into primary role. You need to do this
before any access to the device, such as creating or mounting a file
system.

secondary Brings the device back into secondary role. This is needed since in
a connected DRBD device pair, only one of the two peers may have
primary role (except if allow-two-primaries is explicitly set in
the configuration file).

invalidate Forces DRBD to consider the data on the local backing storage device
as out-of-sync. Therefore DRBD will copy each and every block from
its peer, to bring the local storage device back in sync.

invalidate-remote This command is similar to the invalidate command, however, the
peer's backing storage is invalidated and hence rewritten with the data
of the local node.

resize Causes DRBD to re-examine all sizing constraints, and resize the
resource's device accordingly. For example, if you increased the size of
your backing storage devices (on both nodes, of course), then DRBD
will adopt the new size after you called this command on one of your
nodes. Since new storage space must be synchronised this command
only works if there is at least one primary node present.

The --assume-peer-has-space allows you to resize a device
which is currently not connected to the peer. Use with care, since if
you do not resize the peer's disk as well, further connect attempts of
the two will fail.

check-resize Calls drbdmeta to eventually move internal meta data. If the backing
device was resized, while DRBD was not running, meta data has to be
moved to the end of the device, so that the next attach command
can succeed.

create-md Initializes the meta data storage. This needs to be done before a DRBD
resource can be taken online for the first time. In case of issues with
that command have a look at drbdmeta(8)

get-gi Shows a short textual representation of the data generation
identifiers.

DRBD system manual pages

138

show-gi Prints a textual representation of the data generation identifiers
including explanatory information.

dump-md Dumps the whole contents of the meta data storage, including the
stored bit-map and activity-log, in a textual representation.

outdate Sets the outdated flag in the meta data.

adjust Synchronizes the configuration of the device with your configuration
file. You should always examine the output of the dry-run mode before
actually executing this command.

wait-connect Waits until the device is connected to its peer device.

role Shows the current roles of the devices (local/peer). E.g. Primary/
Secondary

state Deprecated alias for "role", see above.

cstate Shows the current connection state of the devices.

dump Just parse the configuration file and dump it to stdout. May be used
to check the configuration file for syntactic correctness.

outdate Used to mark the node's data as outdated. Usually used by the peer's
fence-peer handler.

verify Starts online verify. During online verify, data on both nodes is
compared for equality. See /proc/drbd for online verify progress.
If out-of-sync blocks are found, they are not resynchronized
automatically. To do that, disconnect and connect the resource when
verification has completed.

See also the notes on data integrity on the drbd.conf manpage.

pause-sync Temporarily suspend an ongoing resynchronization by setting the
local pause flag. Resync only progresses if neither the local nor the
remote pause flag is set. It might be desirable to postpone DRBD's
resynchronization until after any resynchronization of the backing
storage's RAID setup.

resume-sync Unset the local sync pause flag.

new-current-uuid Generates a new currend UUID and rotates all other UUID values.

This can be used to shorten the initial resync of a cluster. See the
drbdsetup manpage for a more details.

dstate Show the current state of the backing storage devices. (local/peer)

hidden-commands Shows all commands undocumented on purpose.

Version

This document was revised for version 8.4.0 of the DRBD distribution.

Author

Written by Philipp Reisner <philipp.reisner@linbit.com> and Lars Ellenberg
<lars.ellenberg@linbit.com>

DRBD system manual pages

139

Reporting�Bugs

Report bugs to <drbd-user@lists.linbit.com>.

Copyright

Copyright 2001-2011 LINBIT Information Technologies, Philipp Reisner, Lars Ellenberg. This
is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See�Also

drbd.conf(5), drbd(8), drbddisk(8), drbdsetup(8), drbdmeta(8) and the DRBD project web site
[http://www.drbd.org/]

http://www.drbd.org/
http://www.drbd.org/

DRBD system manual pages

140

Name
drbdsetup — Setup tool for DRBD

Synopsis

drbdsetup new-resource resource [--cpu-mask {val}] [--on-no-data-accessible{ io-error
| suspend-io }]

drbdsetup new-minor resource minor volume

drbdsetup del-resource resource

drbdsetup del-minor minor

drbdsetup attach minor lower_dev meta_data_dev meta_data_index [--size
{val}] [--max-bio-bvecs {val}] [--on-io-error{ pass_on | call-local-io-error | detach }] [--
fencing{ dont-care | resource-only | resource-and-stonith }] [--disk-barrier] [--disk-flushes] [--
disk-drain] [--md-flushes] [--resync-rate {val}] [--resync-after {val}] [--al-extents {val}]
[--c-plan-ahead {val}] [--c-delay-target {val}] [--c-fill-target {val}] [--c-max-rate {val}]
[--c-min-rate {val}] [--disk-timeout {val}]

drbdsetup connect resource local_addr remote_addr [--tentative] [--discard-my-
data] [--protocol{ A | B | C }] [--timeout {val}] [--max-epoch-size {val}] [--max-buffers
{val}] [--unplug-watermark {val}] [--connect-int {val}] [--ping-int {val}] [--sndbuf-size
{val}] [--rcvbuf-size {val}] [--ko-count {val}] [--allow-two-primaries] [--cram-hmac-
alg {val}] [--shared-secret {val}] [--after-sb-0pri{ disconnect | discard-younger-primary |
discard-older-primary | discard-zero-changes | discard-least-changes | discard-local | discard-
remote }] [--after-sb-1pri{ disconnect | consensus | discard-secondary | call-pri-lost-after-sb
| violently-as0p }] [--after-sb-2pri{ disconnect | call-pri-lost-after-sb | violently-as0p }] [--
always-asbp] [--rr-conflict{ disconnect | call-pri-lost | violently }] [--ping-timeout {val}] [--
data-integrity-alg {val}] [--tcp-cork] [--on-congestion{ block | pull-ahead | disconnect }] [--
congestion-fill {val}] [--congestion-extents {val}] [--csums-alg {val}] [--verify-alg {val}]
[--use-rle]

drbdsetup disk-options minor [--on-io-error{ pass_on | call-local-io-error | detach }] [--
fencing{ dont-care | resource-only | resource-and-stonith }] [--disk-barrier] [--disk-flushes] [--
disk-drain] [--md-flushes] [--resync-rate {val}] [--resync-after {val}] [--al-extents {val}]
[--c-plan-ahead {val}] [--c-delay-target {val}] [--c-fill-target {val}] [--c-max-rate {val}]
[--c-min-rate {val}] [--disk-timeout {val}]

drbdsetup net-options local_addr remote_addr [--protocol{ A | B | C }] [--
timeout {val}] [--max-epoch-size {val}] [--max-buffers {val}] [--unplug-watermark
{val}] [--connect-int {val}] [--ping-int {val}] [--sndbuf-size {val}] [--rcvbuf-size
{val}] [--ko-count {val}] [--allow-two-primaries] [--cram-hmac-alg {val}] [--shared-
secret {val}] [--after-sb-0pri{ disconnect | discard-younger-primary | discard-older-primary
| discard-zero-changes | discard-least-changes | discard-local | discard-remote }] [--after-
sb-1pri{ disconnect | consensus | discard-secondary | call-pri-lost-after-sb | violently-as0p }]
[--after-sb-2pri{ disconnect | call-pri-lost-after-sb | violently-as0p }] [--always-asbp] [--
rr-conflict{ disconnect | call-pri-lost | violently }] [--ping-timeout {val}] [--data-integrity-
alg {val}] [--tcp-cork] [--on-congestion{ block | pull-ahead | disconnect }] [--congestion-fill
{val}] [--congestion-extents {val}] [--csums-alg {val}] [--verify-alg {val}] [--use-rle]

drbdsetup resource-options resource [--cpu-mask {val}] [--on-no-data-accessible{ io-
error | suspend-io }]

drbdsetup disconnect local_addr remote_addr [--force]

drbdsetup detach minor [--force]

DRBD system manual pages

141

drbdsetup primary minor [--force]

drbdsetup secondary minor

drbdsetup down resource

drbdsetup verify minor [--start {val}]

drbdsetup invalidate minor

drbdsetup invalidate-remote minor

drbdsetup wait-connect minor [--wfc-timeout {val}] [--degr-wfc-timeout {val}] [--
outdated-wfc-timeout {val}]

drbdsetup wait-sync minor [--wfc-timeout {val}] [--degr-wfc-timeout {val}] [--
outdated-wfc-timeout {val}]

drbdsetup role minor

drbdsetup cstate minor

drbdsetup dstate minor

drbdsetup resize minor [--size {val}] [--assume-peer-has-space] [--assume-clean]

drbdsetup check-resize minor

drbdsetup pause-sync minor

drbdsetup resume-sync minor

drbdsetup outdate minor

drbdsetup show-gi minor

drbdsetup get-gi minor

drbdsetup show { resource | minor | all }

drbdsetup suspend-io minor

drbdsetup resume-io minor

drbdsetup events { resource | minor | all }

drbdsetup new-current-uuid minor [--clear-bitmap]

Description

drbdsetup is used to associate DRBD devices with their backing block devices, to set up DRBD
device pairs to mirror their backing block devices, and to inspect the configuration of running
DRBD devices.

Note

drbdsetup is a low level tool of the DRBD program suite. It is used by the data disk and drbd scripts
to communicate with the device driver.

DRBD system manual pages

142

Commands

Each drbdsetup sub-command might require arguments and bring its own set of options. All values
have default units which might be overruled by K, M or G. These units are defined in the usual
way (e.g. K = 2^10 = 1024).

Common�options

All drbdsetup sub-commands accept these two options

--create-device In case the specified DRBD device (minor number) does not exist yet,
create it implicitly.

new-resource

Resources are the primary objects of any DRBD configuration. A resource must be created with
the new-resource command before any volumes or minor devices can be created. Connections
are referenced by name.

new-minor

A minor is used as a synonym for replicated block device. It is represented in the /dev/ directory
by a block device. It is the application's interface to the DRBD-replicated block devices. These
block devices get addressed by their minor numbers on the drbdsetup commandline.

A pair of replicated block devices may have different minor numbers on the two machines. They
are associated by a common volume-number. Volume numbers are local to each connection. Minor
numbers are global on one node.

del-resource

Destroys a resource object. This is only possible if the resource has no volumes.

del-minor

Minors can only be destroyed if its disk is detached.

attach,�disk-options

Attach associates device with lower_device to store its data blocks on. The -d (or --disk-
size) should only be used if you wish not to use as much as possible from the backing block
devices. If you do not use -d, the device is only ready for use as soon as it was connected to
its peer once. (See the net command.)

With the disk-options command it is possible to change the options of a minor while it is attached.

--disk-size size You can override DRBD's size determination method with
this option. If you need to use the device before it was ever
connected to its peer, use this option to pass the size of
the DRBD device to the driver. Default unit is sectors (1s =
512 bytes).

If you use the size parameter in drbd.conf, we strongly
recommend to add an explicit unit postfix. drbdadm and
drbdsetup used to have mismatching default units.

--on-io-error
err_handler

If the driver of the lower_device reports an error to
DRBD, DRBD will mark the disk as inconsistent, call a helper

DRBD system manual pages

143

program, or detach the device from its backing storage and
perform all further IO by requesting it from the peer. The
valid err_handlers are: pass_on, call-local-io-
error and detach.

--fencing fencing_policy Under fencing we understand preventive measures
to avoid situations where both nodes are primary and
disconnected (AKA split brain).

Valid fencing policies are:

dont-care This is the default policy. No
fencing actions are done.

resource-only If a node becomes a
disconnected primary, it
tries to outdate the peer's
disk. This is done by calling
the fence-peer handler. The
handler is supposed to
reach the other node over
alternative communication
paths and call 'drbdadm
outdate res' there.

resource-and-stonith If a node becomes a
disconnected primary, it
freezes all its IO operations
and calls its fence-peer
handler. The fence-peer
handler is supposed to reach
the peer over alternative
communication paths and
call 'drbdadm outdate res'
there. In case it cannot reach
the peer, it should stonith
the peer. IO is resumed
as soon as the situation
is resolved. In case your
handler fails, you can resume
IO with the resume-io
command.

--disk-barrier, --disk-
flushes, --disk-drain

DRBD has four implementations to express write-after-
write dependencies to its backing storage device. DRBD
will use the first method that is supported by the backing
storage device and that is not disabled by the user. By default
all three options are enabled.

When selecting the method you should not only base your
decision on the measurable performance. In case your
backing storage device has a volatile write cache (plain disks,
RAID of plain disks) you should use one of the first two. In
case your backing storage device has battery-backed write
cache you may go with option 3 or 4. Option 4 will deliver
the best performance such devices.

Unfortunately device mapper (LVM) might not support
barriers.

DRBD system manual pages

144

The letter after "wo:" in /proc/drbd indicates with method is
currently in use for a device: b, f, d, n. The implementations:

barrier The first requires that the driver of the
backing storage device support barriers (called
'tagged command queuing' in SCSI and 'native
command queuing' in SATA speak). The use of
this method can be disabled by setting the
disk-barrier options to no.

flush The second requires that the backing device
support disk flushes (called 'force unit access'
in the drive vendors speak). The use of
this method can be disabled setting disk-
flushes to no.

drain The third method is simply to let write
requests drain before write requests of a new
reordering domain are issued. That was the only
implementation before 8.0.9. You can disable
this method by setting disk-drain to no.

none The fourth method is to not express write-
after-write dependencies to the backing store
at all.

--md-flushes Disables the use of disk flushes and barrier BIOs when
accessing the meta data device. See the notes on --disk-
flushes.

--max-bio-bvecs In some special circumstances the device mapper stack
manages to pass BIOs to DRBD that violate the constraints
that are set forth by DRBD's merge_bvec() function and
which have more than one bvec. A known example is: phys-
disk -> DRBD -> LVM -> Xen -> missaligned partition (63)
-> DomU FS. Then you might see "bio would need to, but
cannot, be split:" in the Dom0's kernel log.

The best workaround is to proper align the partition within
the VM (E.g. start it at sector 1024). That costs 480
KiB of storage. Unfortunately the default of most Linux
partitioning tools is to start the first partition at an odd
number (63). Therefore most distributions install helpers for
virtual linux machines will end up with missaligned partitions.
The second best workaround is to limit DRBD's max bvecs
per BIO (i.e., the max-bio-bvecs option) to 1, but that
might cost performance.

The default value of max-bio-bvecs is 0, which means
that there is no user imposed limitation.

--resync-rate rate To ensure smooth operation of the application on top of
DRBD, it is possible to limit the bandwidth that may be used
by background synchronization. The default is 250 KiB/sec,
the default unit is KiB/sec.

--resync-after minor Start resync on this device only if the device with minor
is already in connected state. Otherwise this device waits in
SyncPause state.

DRBD system manual pages

145

--al-extents extents DRBD automatically performs hot area detection. With this
parameter you control how big the hot area (=active set)
can get. Each extent marks 4M of the backing storage.
In case a primary node leaves the cluster unexpectedly,
the areas covered by the active set must be resynced
upon rejoining of the failed node. The data structure is
stored in the meta-data area, therefore each change of the
active set is a write operation to the meta-data device. A
higher number of extents gives longer resync times but less
updates to the meta-data. The default number of extents
is 127. (Minimum: 7, Maximum: 3843)

--c-plan-ahead
plan_time, --c-fill-
target fill_target,
--c-delay-target
delay_target, --c-max-
rate max_rate

The dynamic resync speed controller gets enabled with
setting plan_time to a positive value. It aims to fill the
buffers along the data path with either a constant amount
of data fill_target, or aims to have a constant delay
time of delay_target along the path. The controller has
an upper bound of max_rate.

By plan_time the agility of the controller is configured.
Higher values yield for slower/lower responses of the
controller to deviation from the target value. It should be at
least 5 times RTT. For regular data paths a fill_target
in the area of 4k to 100k is appropriate. For a setup that
contains drbd-proxy it is advisable to use delay_target
instead. Only when fill_target is set to 0 the controller
will use delay_target. 5 times RTT is a reasonable
starting value. Max_rate should be set to the bandwidth
available between the DRBD-hosts and the machines
hosting DRBD-proxy, or to the available disk-bandwidth.

The default value of plan_time is 0, the default unit is 0.1
seconds. Fill_target has 0 and sectors as default unit.
Delay_target has 1 (100ms) and 0.1 as default unit.
Max_rate has 10240 (100MiB/s) and KiB/s as default
unit.

--c-min-rate min_rate We track the disk IO rate caused by the resync, so we can
detect non-resync IO on the lower level device. If the lower
level device seems to be busy, and the current resync rate is
above min_rate, we throttle the resync.

The default value of min_rate is 4M, the default unit is k.
If you want to not throttle at all, set it to zero, if you want
to throttle always, set it to one.

-t, --disk-timeout
disk_timeout

If the driver of the lower_device does not finish an IO
request within disk_timeout, DRBD considers the disk
as failed. If DRBD is connected to a remote host, it will
reissue local pending IO requests to the peer, and ship all
new IO requests to the peer only. The disk state advances
to diskless, as soon as the backing block device has finished
all IO requests.

The default value of is 0, which means that no timeout is
enforced. The default unit is 100ms. This option is available
since 8.3.12.

connect,�net-options

DRBD system manual pages

146

Connect sets up the device to listen on af:local_addr:port for incoming connections and
to try to connect to af:remote_addr:port. If port is omitted, 7788 is used as default. If
af is omitted ipv4 gets used. Other supported address families are ipv6, ssocks for Dolphin
Interconnect Solutions' "super sockets" and sdp for Sockets Direct Protocol (Infiniband).

The net-options command allows you to change options while the connection is established.

--protocol protocol On the TCP/IP link the specified protocol is used. Valid
protocol specifiers are A, B, and C.

Protocol A: write IO is reported as completed, if it has
reached local disk and local TCP send buffer.

Protocol B: write IO is reported as completed, if it has
reached local disk and remote buffer cache.

Protocol C: write IO is reported as completed, if it has
reached both local and remote disk.

--connect-int time In case it is not possible to connect to the remote DRBD
device immediately, DRBD keeps on trying to connect. With
this option you can set the time between two retries. The
default value is 10. The unit is seconds.

--ping-int time If the TCP/IP connection linking a DRBD device pair is idle
for more than time seconds, DRBD will generate a keep-
alive packet to check if its partner is still alive. The default
value is 10. The unit is seconds.

--timeout val If the partner node fails to send an expected response
packet within val tenths of a second, the partner node
is considered dead and therefore the TCP/IP connection is
abandoned. The default value is 60 (= 6 seconds).

--sndbuf-size size The socket send buffer is used to store packets sent to the
secondary node, which are not yet acknowledged (from a
network point of view) by the secondary node. When using
protocol A, it might be necessary to increase the size of this
data structure in order to increase asynchronicity between
primary and secondary nodes. But keep in mind that more
asynchronicity is synonymous with more data loss in the
case of a primary node failure. Since 8.0.13 resp. 8.2.7
setting the size value to 0 means that the kernel should
autotune this. The default size is 0, i.e. autotune.

--rcvbuf-size size Packets received from the network are stored in the socket
receive buffer first. From there they are consumed by DRBD.
Before 8.3.2 the receive buffer's size was always set to the
size of the socket send buffer. Since 8.3.2 they can be tuned
independently. A value of 0 means that the kernel should
autotune this. The default size is 0, i.e. autotune.

--ko-count count In case the secondary node fails to complete a single write
request for count times the timeout, it is expelled from
the cluster, i.e. the primary node goes into StandAlone mode.
The default is 0, which disables this feature.

--max-epoch-size val With this option the maximal number of write requests
between two barriers is limited. Should be set to the same
as --max-buffers. Values smaller than 10 can lead to
degraded performance. The default value is 2048.

DRBD system manual pages

147

--max-buffers val With this option the maximal number of buffer pages
allocated by DRBD's receiver thread is limited. Should be set
to the same as --max-epoch-size. Small values could
lead to degraded performance. The default value is 2048,
the minimum 32.

--unplug-watermark val When the number of pending write requests on the
standby (secondary) node exceeds the unplug-watermark,
we trigger the request processing of our backing storage
device. Some storage controllers deliver better performance
with small values, others deliver best performance when the
value is set to the same value as max-buffers. Minimum 16,
default 128, maximum 131072.

--allow-two-primaries With this option set you may assign primary role to both
nodes. You only should use this option if you use a shared
storage file system on top of DRBD. At the time of writing
the only ones are: OCFS2 and GFS. If you use this option with
any other file system, you are going to crash your nodes and
to corrupt your data!

--cram-hmac-alg alg You need to specify the HMAC algorithm to enable peer
authentication at all. You are strongly encouraged to use
peer authentication. The HMAC algorithm will be used for
the challenge response authentication of the peer. You may
specify any digest algorithm that is named in /proc/crypto.

--shared-secret secret The shared secret used in peer authentication. May be up to
64 characters.

--after-sb-0pri asb-0p-
policy

possible policies are:

disconnect No automatic
resynchronization,
simply disconnect.

discard-younger-primary Auto sync from the
node that was primary
before the split-brain
situation occurred.

discard-older-primary Auto sync from the
node that became
primary as second
during the split-brain
situation.

discard-zero-changes In case one node
did not write anything
since the split brain
became evident, sync
from the node that
wrote something to the
node that did not write
anything. In case none
wrote anything this
policy uses a random
decision to perform a
"resync" of 0 blocks. In

DRBD system manual pages

148

case both have written
something this policy
disconnects the nodes.

discard-least-changes Auto sync from the
node that touched more
blocks during the split
brain situation.

discard-node-NODENAME Auto sync to the named
node.

--after-sb-1pri asb-1p-
policy

possible policies are:

disconnect No automatic
resynchronization, simply
disconnect.

consensus Discard the version of
the secondary if the
outcome of the after-
sb-0pri algorithm
would also destroy the
current secondary's data.
Otherwise disconnect.

discard-secondary Discard the secondary's
version.

call-pri-lost-after-sb Always honor the
outcome of the after-
sb-0pri algorithm.
In case it decides the
current secondary has
the correct data, call
the pri-lost-after-
sb on the current
primary.

violently-as0p Always honor the
outcome of the after-
sb-0pri algorithm.
In case it decides the
current secondary has
the correct data, accept
a possible instantaneous
change of the primary's
data.

--after-sb-2pri asb-2p-
policy

possible policies are:

disconnect No automatic
resynchronization, simply
disconnect.

call-pri-lost-after-sb Always honor the
outcome of the after-
sb-0pri algorithm.
In case it decides the
current secondary has

DRBD system manual pages

149

the right data, call
the pri-lost-after-
sb on the current
primary.

violently-as0p Always honor the
outcome of the after-
sb-0pri algorithm.
In case it decides the
current secondary has
the right data, accept
a possible instantaneous
change of the primary's
data.

--always-asbp Normally the automatic after-split-brain policies are only
used if current states of the UUIDs do not indicate the
presence of a third node.

With this option you request that the automatic after-split-
brain policies are used as long as the data sets of the nodes
are somehow related. This might cause a full sync, if the
UUIDs indicate the presence of a third node. (Or double
faults have led to strange UUID sets.)

--rr-conflict role-
resync-conflict-policy

This option sets DRBD's behavior when DRBD deduces from
its meta data that a resynchronization is needed, and the
SyncTarget node is already primary. The possible settings
are: disconnect, call-pri-lost and violently.
While disconnect speaks for itself, with the call-
pri-lost setting the pri-lost handler is called which
is expected to either change the role of the node to
secondary, or remove the node from the cluster. The default
is disconnect.

With the violently setting you allow DRBD to force a
primary node into SyncTarget state. This means that the data
exposed by DRBD changes to the SyncSource's version of
the data instantaneously. USE THIS OPTION ONLY IF YOU
KNOW WHAT YOU ARE DOING.

--data-integrity-alg
hash_alg

DRBD can ensure the data integrity of the user's data on the
network by comparing hash values. Normally this is ensured
by the 16 bit checksums in the headers of TCP/IP packets.
This option can be set to any of the kernel's data digest
algorithms. In a typical kernel configuration you should have
at least one of md5, sha1, and crc32c available. By default
this is not enabled.

See also the notes on data integrity on the drbd.conf
manpage.

--no-tcp-cork DRBD usually uses the TCP socket option TCP_CORK to
hint to the network stack when it can expect more data,
and when it should flush out what it has in its send queue.
There is at least one network stack that performs worse
when one uses this hinting method. Therefore we introduced
this option, which disable the setting and clearing of the
TCP_CORK socket option by DRBD.

DRBD system manual pages

150

--ping-timeout
ping_timeout

The time the peer has to answer to a keep-alive packet. In
case the peer's reply is not received within this time period,
it is considered dead. The default unit is tenths of a second,
the default value is 5 (for half a second).

--discard-my-data Use this option to manually recover from a split-brain
situation. In case you do not have any automatic after-
split-brain policies selected, the nodes refuse to connect.
By passing this option you make this node a sync target
immediately after successful connect.

--tentative Causes DRBD to abort the connection process after the
resync handshake, i.e. no resync gets performed. You can
find out which resync DRBD would perform by looking at
the kernel's log file.

--on-congestion
congestion_policy,
--congestion-fill
fill_threshold, --
congestion-extents
active_extents_threshold

By default DRBD blocks when the available TCP send queue
becomes full. That means it will slow down the application
that generates the write requests that cause DRBD to send
more data down that TCP connection.

When DRBD is deployed with DRBD-proxy it might be more
desirable that DRBD goes into AHEAD/BEHIND mode shortly
before the send queue becomes full. In AHEAD/BEHIND
mode DRBD does no longer replicate data, but still keeps the
connection open.

The advantage of the AHEAD/BEHIND mode is that the
application is not slowed down, even if DRBD-proxy's buffer
is not sufficient to buffer all write requests. The downside
is that the peer node falls behind, and that a resync will be
necessary to bring it back into sync. During that resync the
peer node will have an inconsistent disk.

Available congestion_policys are block and pull-
ahead. The default is block. Fill_threshold might
be in the range of 0 to 10GiBytes. The default is 0 which
disables the check. Active_extents_threshold has
the same limits as al-extents.

The AHEAD/BEHIND mode and its settings are available
since DRBD 8.3.10.

--verify-alg hash-alg During online verification (as initiated by the verify sub-
command), rather than doing a bit-wise comparison, DRBD
applies a hash function to the contents of every block being
verified, and compares that hash with the peer. This option
defines the hash algorithm being used for that purpose. It
can be set to any of the kernel's data digest algorithms. In
a typical kernel configuration you should have at least one
of md5, sha1, and crc32c available. By default this is not
enabled; you must set this option explicitly in order to be
able to use on-line device verification.

See also the notes on data integrity on the drbd.conf
manpage.

--csums-alg hash-alg A resync process sends all marked data blocks form the
source to the destination node, as long as no csums-alg is
given. When one is specified the resync process exchanges

DRBD system manual pages

151

hash values of all marked blocks first, and sends only those
data blocks over, that have different hash values.

This setting is useful for DRBD setups with low bandwidth
links. During the restart of a crashed primary node, all blocks
covered by the activity log are marked for resync. But a large
part of those will actually be still in sync, therefore using
csums-alg will lower the required bandwidth in exchange
for CPU cycles.

--use-rle During resync-handshake, the dirty-bitmaps of the nodes
are exchanged and merged (using bit-or), so the nodes will
have the same understanding of which blocks are dirty. On
large devices, the fine grained dirty-bitmap can become
large as well, and the bitmap exchange can take quite some
time on low-bandwidth links.

Because the bitmap typically contains compact areas where
all bits are unset (clean) or set (dirty), a simple run-length
encoding scheme can considerably reduce the network
traffic necessary for the bitmap exchange.

For backward compatibility reasons, and because on fast
links this possibly does not improve transfer time but
consumes cpu cycles, this defaults to off.

Introduced in 8.3.2.

resource-options

Changes the options of the resource at runtime.

--cpu-mask cpu-mask Sets the cpu-affinity-mask for DRBD's kernel threads of this
device. The default value of cpu-mask is 0, which means
that DRBD's kernel threads should be spread over all CPUs
of the machine. This value must be given in hexadecimal
notation. If it is too big it will be truncated.

--on-no-data-accessible
ond-policy

This setting controls what happens to IO requests on a
degraded, disk less node (I.e. no data store is reachable). The
available policies are io-error and suspend-io.

If ond-policy is set to suspend-io you can either
resume IO by attaching/connecting the last lost data
storage, or by the drbdadm resume-io res command. The
latter will result in IO errors of course.

The default is io-error. This setting is available since
DRBD 8.3.9.

primary

Sets the device into primary role. This means that applications (e.g. a file system) may open
the device for read and write access. Data written to the device in primary role are mirrored
to the device in secondary role.

Normally it is not possible to set both devices of a connected DRBD device pair to primary role.
By using the --allow-two-primaries option, you override this behavior and instruct DRBD
to allow two primaries.

DRBD system manual pages

152

--overwrite-data-of-peer Alias for --force.

--force Becoming primary fails if the local replica is not up-to-date. I.e. when it is
inconsistent, outdated of consistent. By using this option you can force it into primary
role anyway. USE THIS OPTION ONLY IF YOU KNOW WHAT YOU ARE DOING.

secondary

Brings the device into secondary role. This operation fails as long as at least one application (or
file system) has opened the device.

It is possible that both devices of a connected DRBD device pair are secondary.

verify

This initiates on-line device verification. During on-line verification, the contents of every block
on the local node are compared to those on the peer node. Device verification progress can be
monitored via /proc/drbd. Any blocks whose content differs from that of the corresponding
block on the peer node will be marked out-of-sync in DRBD's on-disk bitmap; they are not
brought back in sync automatically. To do that, simply disconnect and reconnect the resource.

If on-line verification is already in progress, this command silently does nothing.

This command will fail if the device is not part of a connected device pair.

See also the notes on data integrity on the drbd.conf manpage.

--start start-sector Since version 8.3.2, on-line verification should resume from
the last position after connection loss. It may also be started
from an arbitrary position by setting this option.

Default unit is sectors. You may also specify a unit explicitly.
The start-sector will be rounded down to a multiple of
8 sectors (4kB).

invalidate

This forces the local device of a pair of connected DRBD devices into SyncTarget state, which
means that all data blocks of the device are copied over from the peer.

This command will fail if the device is not part of a connected device pair.

invalidate-remote

This forces the local device of a pair of connected DRBD devices into SyncSource state, which
means that all data blocks of the device are copied to the peer.

On a disconnected device, this will set all bits in the out of sync bitmap. As a side affect this
suspend updates to the on disk activity log. Updates to the on disk activity log will get resumes
automatically when necessary.

wait-connect

Returns as soon as the device can communicate with its partner device.

--wfc-timeout
wfc_timeout, --
degr-wfc-timeout
degr_wfc_timeout, --
outdated-wfc-timeout

This command will fail if the device cannot communicate
with its partner for timeout seconds. If the peer was
working before this node was rebooted, the wfc_timeout
is used. If the peer was already down before this node was
rebooted, the degr_wfc_timeout is used. If the peer was

DRBD system manual pages

153

outdated_wfc_timeout, --
wait-after-sb

successfully outdated before this node was rebooted the
outdated_wfc_timeout is used. The default value for
all those timeout values is 0 which means to wait forever.
The unit is seconds. In case the connection status goes down
to StandAlone because the peer appeared but the devices
had a split brain situation, the default for the command is to
terminate. You can change this behavior with the --wait-
after-sb option.

wait-sync

Returns as soon as the device leaves any synchronization into connected state. The options are
the same as with the wait-connect command.

disconnect

Removes the information set by the net command from the device. This means that the
device goes into unconnected state and will no longer listen for incoming connections.

detach

Removes the information set by the disk command from the device. This means that the
device is detached from its backing storage device.

-f, --force A regular detach returns after the disk state finally reached diskless.
As a consequence detaching from a frozen backing block device never
terminates.

On the other hand A forced detach returns immediately. It allows you to
detach DRBD from a frozen backing block device. Please note that the disk
will be marked as failed until all pending IO requests where finished by the
backing block device.

down

Removes all configuration information from the device and forces it back to unconfigured state.

role

Shows the current roles of the device and its peer, as local/peer.

state

Deprecated alias for "role"

cstate

Shows the current connection state of the device.

dstate

Shows the current states of the backing storage devices, as local/peer.

resize

This causes DRBD to reexamine the size of the device's backing storage device. To actually do
online growing you need to extend the backing storages on both devices and call the resize
command on one of your nodes.

DRBD system manual pages

154

The --assume-peer-has-space allows you to resize a device which is currently not
connected to the peer. Use with care, since if you do not resize the peer's disk as well, further
connect attempts of the two will fail.

When the --assume-clean option is given DRBD will skip the resync of the new storage. Only
do this if you know that the new storage was initialized to the same content by other means.

check-resize

To enable DRBD to detect offline resizing of backing devices this command may be used to record
the current size of backing devices. The size is stored in files in /var/lib/drbd/ named drbd-
minor-??.lkbd

This command is called by drbdadm resize res after drbdsetup device resize returned.

pause-sync

Temporarily suspend an ongoing resynchronization by setting the local pause flag. Resync only
progresses if neither the local nor the remote pause flag is set. It might be desirable to postpone
DRBD's resynchronization after eventual resynchronization of the backing storage's RAID setup.

resume-sync

Unset the local sync pause flag.

outdate

Mark the data on the local backing storage as outdated. An outdated device refuses to become
primary. This is used in conjunction with fencing and by the peer's fence-peer handler.

show-gi

Displays the device's data generation identifiers verbosely.

get-gi

Displays the device's data generation identifiers.

show

Shows all available configuration information of the device.

suspend-io

This command is of no apparent use and just provided for the sake of completeness.

resume-io

If the fence-peer handler fails to stonith the peer node, and your fencing policy is set to
resource-and-stonith, you can unfreeze IO operations with this command.

events

Displays every state change of DRBD and all calls to helper programs. This might be used to get
notified of DRBD's state changes by piping the output to another program.

--all-devices Display the events of all DRBD minors.

DRBD system manual pages

155

--unfiltered This is a debugging aid that displays the content of all received netlink
messages.

new-current-uuid

Generates a new current UUID and rotates all other UUID values. This has at least two use cases,
namely to skip the initial sync, and to reduce network bandwidth when starting in a single node
configuration and then later (re-)integrating a remote site.

Available option:

--clear-bitmap Clears the sync bitmap in addition to generating a new current UUID.

This can be used to skip the initial sync, if you want to start from scratch. This use-case does only
work on "Just Created" meta data. Necessary steps:

1. On both nodes, initialize meta data and configure the device.

drbdadm create-md --force res

2. They need to do the initial handshake, so they know their sizes.

drbdadm up res

3. They are now Connected Secondary/Secondary Inconsistent/Inconsistent. Generate a new
current-uuid and clear the dirty bitmap.

drbdadm new-current-uuid --clear-bitmap res

4. They are now Connected Secondary/Secondary UpToDate/UpToDate. Make one side primary
and create a file system.

drbdadm primary res

mkfs -t fs-type $(drbdadm sh-dev res)

One obvious side-effect is that the replica is full of old garbage (unless you made them identical
using other means), so any online-verify is expected to find any number of out-of-sync blocks.

You must not use this on pre-existing data! Even though it may appear to work at first glance, once
you switch to the other node, your data is toast, as it never got replicated. So do not leave out
the mkfs (or equivalent).

This can also be used to shorten the initial resync of a cluster where the second node is added
after the first node is gone into production, by means of disk shipping. This use-case works on
disconnected devices only, the device may be in primary or secondary role.

The necessary steps on the current active server are:

1. drbdsetup new-current-uuid --clear-bitmap minor

2. Take the copy of the current active server. E.g. by pulling a disk out of the RAID1 controller,
or by copying with dd. You need to copy the actual data, and the meta data.

3. drbdsetup new-current-uuid minor

Now add the disk to the new secondary node, and join it to the cluster. You will get a resync of
that parts that were changed since the first call to drbdsetup in step 1.

Examples

For examples, please have a look at the DRBD User's Guide [http://www.drbd.org/users-guide/].

http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide/

DRBD system manual pages

156

Version

This document was revised for version 8.3.2 of the DRBD distribution.

Author

Written by Philipp Reisner <philipp.reisner@linbit.com> and Lars Ellenberg
<lars.ellenberg@linbit.com>

Reporting�Bugs

Report bugs to <drbd-user@lists.linbit.com>.

Copyright

Copyright 2001-2008 LINBIT Information Technologies, Philipp Reisner, Lars Ellenberg. This
is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See�Also

drbd.conf(5), drbd(8), drbddisk(8), drbdadm(8), DRBD User's Guide [http://www.drbd.org/
users-guide/], DRBD web site [http://www.drbd.org/]

http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide/
http://www.drbd.org/users-guide/
http://www.drbd.org/
http://www.drbd.org/

DRBD system manual pages

157

Name
drbdmeta — DRBD's meta data management tool

Synopsis

drbdmeta [--force] [--ignore-sanity-checks] { device } { v06 minor | v07 meta_dev
index | v08 meta_dev index } { command } [cmd args ...]

Description

Drbdmeta is used to create, display and modify the contents of DRBD's meta data storage. Usually
you do not want to use this command directly, but start it via the frontend drbdadm(8).

This command only works if the DRBD resource is currently down, or at least detached from
its backing storage. The first parameter is the device node associated to the resource. With the
second parameter you can select the version of the meta data. Currently all major DRBD releases
(0.6, 0.7 and 8) are supported.

Options

--force All questions that get asked by drbdmeta are treated as if the
user answered 'yes'.

--ignore-sanity-checks Some sanity checks cause drbdmeta to terminate. E.g. if a file
system image would get destroyed by creating the meta data.
By using that option you can force drbdmeta to ignore these
checks.

Commands

create-md Create-md initializes the meta data storage. This needs to be done before a
DRBD resource can be taken online for the first time. In case there is already
a meta data signature of an older format in place, drbdmeta will ask you if it
should convert the older format to the selected format.

get-gi Get-gi shows a short textual representation of the data generation identifier.
In version 0.6 and 0.7 these are generation counters, while in version 8 it is
a set of UUIDs.

show-gi Show-gi prints a textual representation of the data generation identifiers
including explanatory information.

dump-md Dumps the whole contents of the meta data storage including the stored bit-
map and activity-log in a textual representation.

outdate Sets the outdated flag in the meta data. This is used by the peer node when
it wants to become primary, but cannot communicate with the DRBD stack
on this host.

dstate Prints the state of the data on the backing storage. The output is always
followed by '/DUnknown' since drbdmeta only looks at the local meta data.

check-resize Examines the device size of a backing device, and it's last known device size,
recorded in a file /var/lib/drbd/drbd-minor-??.lkbd. In case the size of the
backing device changed, and the meta data can be found at the old position,
it moves the meta data to the right position at the end of the block device.

DRBD system manual pages

158

Expert's�commands

Drbdmeta allows you to modify the meta data as well. This is intentionally omitted for the
command's usage output, since you should only use it if you really know what you are doing. By
setting the generation identifiers to wrong values, you risk to overwrite your up-to-data data
with an older version of your data.

set-gi gi Set-gi allows you to set the generation identifier. Gi needs to be
a generation counter for the 0.6 and 0.7 format, and a UUID set
for 8.x. Specify it in the same way as get-gi shows it.

restore-md dump_file Reads the dump_file and writes it to the meta data.

Version

This document was revised for version 8.3.2 of the DRBD distribution.

Author

Written by Philipp Reisner <philipp.reisner@linbit.com> and Lars Ellenberg
<lars.ellenberg@linbit.com>.

Reporting�Bugs

Report bugs to <drbd-user@lists.linbit.com>.

Copyright

Copyright 2001-2008 LINBIT Information Technologies, Philipp Reisner, Lars Ellenberg. This
is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See�Also

drbdadm(8)

159

Index
Symbols
/proc/drbd, 32

A
Activity Log, 106, 106, 106

B
battery-backed write cache, 97
bitmap (DRBD-specific concept), 107
bonding driver, 94

C
CentOS, 80
checksum-based synchronization, 41
cluster.conf (Red Hat Cluster configuration file), 70
Connected (connection state), 61
connection state, 32, 33, 33, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34,
34, 34, 34, 55, 55, 61, 61

D
Debian GNU/Linux, 80, 99
disk failure, 53
disk state, 32, 34, 34, 35, 35, 35, 35, 35, 35, 35,
53, 61, 61
diskless (disk state), 53
diskless mode, 53
dopd, 60
drbd-overview, 32
drbd.conf, 42, 77, 80, 81, 83, 84, 119

address, 123
after-resync-target, 133
after-sb-0pri, 127
after-sb-1pri, 128
after-sb-2pri, 128
al-extents, 131
allow-two-primaries, 126
before-resync-target, 133
common, 120
connect-int, 126
cpu-mask, 133
cram-hmac-alg, 127
data-integrity-alg, 129
degr-wfc-timeout, 130
device, 123
dialog-refresh, 123
disable-ip-verification, 123
disk, 121, 123
disk-flushes, 125, ,
disk-timeout, 125
fence-peer, 133
fencing, 124
global, 120
handlers, 122

include, 134
initial-split-brain, 133
ko-count, 126
local-io-error, 133
max-bio-bvecs, 125
max-buffers, 126
max-epoch-size, 126
md-flushes, 125
meta-disk, 124
minor-count, 122
net, 122
on, 120, 121
on-io-error, 124
options, 122
outdated-wfc-timeout, 130
ping-int, 126
ping-timeout, 126
pri-lost, 133
pri-lost-after-sb, 133
pri-on-incon-degr, 133
protocol, 123
rcvbuf-size, 126
resource, 120
resync-after, 131
resync-rate, 131
rr-conflict, 129
shared-secret, 127
skip, 120
sndbuf-size, 126
split-brain, 133
stacked-on-top-of, 121
startup, 122
tcp-cork, 130
timeout, 126
unplug-watermark, 126
usage-count, 123
use-rle, 131
volume, 121
wfc-timeout, 130

drbdadm, 34, 37, 53, 54, 78, 78, 136
adjust, 138
check-resize, 137
connect, 137
create-md, 137
cstate, 138
detach, 137
disconnect, 137
down, 137
dstate, 138
dump, 138
dump-md, 138
get-gi, 137
invalidate, 137
invalidate-remote, 137
new-current-uuid, 138
outdate, 138, 138
pause-sync, 138
primary, 137

Index

160

resize, 137
resume-sync, 138
role, 138
secondary, 137
show-gi, 138
state, 138
syncer, 137
up, 137
verify, 138
wait-connect, 138

drbdmeta, 157
--force, 157
--ignore-sanity-checks, 157
check-resize, 157
create-md, 157
dstate, 157
dump-md, 157
get-gi, 157
outdate, 157
restore-md , 158
set-gi , 158
show-gi, 157

drbdsetup, 140
check-resize, 154
cstate, 153
detach, 153
disconnect, 153
disk, 142
down, 153
dstate, 153
events, 154
get-gi, 154
invalidate, 152
invalidate-remote, 152
net, 145
new-current-uuid, 155
outdate, 154
pause-sync, 154
primary, 151
resize, 153
resource-options, 151
resume-io, 154
resume-sync, 154
role, 153
secondary, 152
show, 154
show-gi, 154
state, 153
suspend-io, 154
verify, 152
wait-connect, 152
wait-sync, 153

drive failure, 53
dual-primary mode, 37, 80, 88

F
filter expression (LVM), 75

G
generation identifiers, 103
GFS, 80, 81, 82
Global File System, 80

H
ha.cf (Heartbeat configuration file), 60
Heartbeat, 90

I
I/O errors, 42

J
Jumbo frames, 98

L
latency, 97, 97
Logical Volume (LVM), 72, 73, 77
Logical Volume Management, 72
lvcreate (LVM command), 73, 76, 77, 78, 81
lvdisplay (LVM command), 81
LVM, 72, 72, 72, 72, 72, 73, 73, 74, 74, 75, 75,
75, 75, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78,
78, 80, 81, 81, 81, 81, 81, 101
lvs (LVM command), 81

M
meta data, 101, 101, 102, 102

N
node failure, 54, 54, 55, 55

O
OCFS2, 83
on-line device verification, 38, 38, 39
Oracle Cluster File System, 83
Outdated (disk state), 61

P
Pacemaker, 58
Physical Volume (LVM), 72, 74, 77
pvcreate (LVM command), 74, 77, 78, 81

Q
quick-sync bitmap, 107

R
Red Hat Cluster, 69, 69, 69, 70
Red Hat Cluster Suite, 80
replication traffic integrity checking, 43
resource, 32, 34, 36, 36, 36, 37, 43, 43, 44, 45

S
snapshots (LVM), 72
split brain, 55, 55, 56, 103, 105

Index

161

StandAlone (connection state), 55
synchronization, 39

T
throughput, 94, 94

U
Ubuntu Linux, 99
UpToDate (disk state), 61

V
vgchange (LVM command), 78, 78
vgcreate (LVM command), 75, 77, 78, 81
vgscan (LVM command), 75, 77
Volume Group (LVM), 72

W
WFConnection (connection state), 55, 61

X
Xen, 88, 88, 88, 88, 88, 89, 90

	The DRBD User’s Guide
	Table of Contents
	Please Read This First
	Part I. Introduction to DRBD
	Chapter 1. DRBD Fundamentals
	1.1. Kernel module
	1.2. User space administration tools
	1.3. Resources
	1.4. Resource roles

	Chapter 2. DRBD Features
	2.1. Single-primary mode
	2.2. Dual-primary mode
	2.3. Replication modes
	2.4. Multiple replication transports
	2.5. Efficient synchronization
	2.5.1. Variable-rate synchronization
	2.5.2. Fixed-rate synchronization
	2.5.3. Checksum-based synchronization

	2.6. Suspended replication
	2.7. On-line device verification
	2.8. Replication traffic integrity checking
	2.9. Split brain notification and automatic recovery
	2.10. Support for disk flushes
	2.11. Disk error handling strategies
	2.12. Strategies for dealing with outdated data
	2.13. Three-way replication
	2.14. Long-distance replication with DRBD Proxy
	2.15. Truck based replication
	2.16. Floating peers

	Part II. Building, installing and configuring DRBD
	Chapter 3. Installing pre-built DRBD binary packages
	3.1. Packages supplied by LINBIT
	3.2. Packages supplied by distribution vendors
	3.2.1. SUSE Linux Enterprise Server
	3.2.2. Debian GNU/Linux
	3.2.3. CentOS
	3.2.4. Ubuntu Linux

	Chapter 4. Building and installing DRBD from source
	4.1. Downloading the DRBD sources
	4.2. Checking out sources from the public DRBD source repository
	4.3. Building DRBD from source
	4.3.1. Checking build prerequisites
	4.3.2. Preparing the kernel source tree
	4.3.3. Preparing the DRBD build tree
	4.3.4. Building DRBD userspace utilities
	4.3.5. Compiling DRBD as a kernel module
	4.3.5.1. Building DRBD for the currently-running kernel
	4.3.5.2. Building against precompiled kernel headers
	4.3.5.3. Building against a kernel source tree
	4.3.5.4. Using a non-default C compiler
	4.3.5.5. Checking for successful build completion

	4.4. Building a DRBD RPM package
	4.5. Building a DRBD Debian package

	Chapter 5. Configuring DRBD
	5.1. Preparing your lower-level storage
	5.2. Preparing your network configuration
	5.3. Configuring your resource
	5.3.1. Example configuration
	5.3.2. The global section
	5.3.3. The common section
	5.3.4. The resource sections

	5.4. Enabling your resource for the first time
	5.5. The initial device synchronization
	5.6. Using truck based replication

	Part III. Working with DRBD
	Chapter 6. Common administrative tasks
	6.1. Checking DRBD status
	6.1.1. Retrieving status with drbd-overview
	6.1.2. Status information in /proc/drbd
	6.1.3. Connection states
	6.1.4. Resource roles
	6.1.5. Disk states
	6.1.6. I/O state flags
	6.1.7. Performance indicators

	6.2. Enabling and disabling resources
	6.2.1. Enabling resources
	6.2.2. Disabling resources

	6.3. Reconfiguring resources
	6.4. Promoting and demoting resources
	6.5. Enabling dual-primary mode
	6.5.1. Permanent dual-primary mode
	6.5.2. Temporary dual-primary mode
	6.5.3. Automating promotion on system startup

	6.6. Using on-line device verification
	6.6.1. Enabling on-line verification
	6.6.2. Invoking on-line verification
	6.6.3. Automating on-line verification

	6.7. Configuring the rate of synchronization
	6.7.1. Permanent fixed sync rate configuration
	6.7.2. Temporary fixed sync rate configuration
	6.7.3. Variable sync rate configuration

	6.8. Configuring checksum-based synchronization
	6.9. Configuring congestion policies and suspended replication
	6.10. Configuring I/O error handling strategies
	6.11. Configuring replication traffic integrity checking
	6.12. Resizing resources
	6.12.1. Growing on-line
	6.12.2. Growing off-line
	6.12.3. Shrinking on-line
	6.12.4. Shrinking off-line

	6.13. Disabling backing device flushes
	6.14. Configuring split brain behavior
	6.14.1. Split brain notification
	6.14.2. Automatic split brain recovery policies

	6.15. Creating a three-node setup
	6.15.1. Device stacking considerations
	6.15.2. Configuring a stacked resource
	6.15.3. Enabling stacked resources

	6.16. Using DRBD Proxy
	6.16.1. DRBD Proxy deployment considerations
	6.16.2. Installation
	6.16.3. License file
	6.16.4. Configuration
	6.16.5. Controlling DRBD Proxy
	6.16.6. Troubleshooting

	Chapter 7. Troubleshooting and error recovery
	7.1. Dealing with hard drive failure
	7.1.1. Manually detaching DRBD from your hard drive
	7.1.2. Automatic detach on I/O error
	7.1.3. Replacing a failed disk when using internal meta data
	7.1.4. Replacing a failed disk when using external meta data

	7.2. Dealing with node failure
	7.2.1. Dealing with temporary secondary node failure
	7.2.2. Dealing with temporary primary node failure
	7.2.3. Dealing with permanent node failure

	7.3. Manual split brain recovery

	Part IV. DRBD-enabled applications
	Chapter 8. Integrating DRBD with Pacemaker clusters
	8.1. Pacemaker primer
	8.2. Adding a DRBD-backed service to the cluster configuration
	8.3. Using resource-level fencing in Pacemaker clusters
	8.3.1. Resource-level fencing with dopd
	8.3.1.1. Heartbeat configuration for dopd
	8.3.1.2. DRBD Configuration for dopd
	8.3.1.3. Testing dopd functionality

	8.3.2. Resource-level fencing using the Cluster Information Base (CIB)

	8.4. Using stacked DRBD resources in Pacemaker clusters
	8.4.1. Adding off-site disaster recovery to Pacemaker clusters
	8.4.2. Using stacked resources to achieve 4-way redundancy in Pacemaker clusters

	8.5. Configuring DRBD to replicate between two SAN-backed Pacemaker clusters
	8.5.1. DRBD resource configuration
	8.5.2. Pacemaker resource configuration
	8.5.3. Site fail-over

	Chapter 9. Integrating DRBD with Red Hat Cluster
	9.1. Red Hat Cluster background information
	9.1.1. Fencing
	9.1.2. The Resource Group Manager
	9.1.2.1. Red Hat Cluster resources
	9.1.2.2. Red Hat Cluster services
	9.1.2.3. rgmanager resource agents

	9.2. Red Hat Cluster configuration
	9.2.1. The cluster.conf file

	9.3. Using DRBD in Red Hat Cluster fail-over clusters
	9.3.1. Setting up your cluster configuration

	Chapter 10. Using LVM with DRBD
	10.1. LVM primer
	10.2. Using a Logical Volume as a DRBD backing device
	10.3. Using automated LVM snapshots during DRBD synchronization
	10.4. Configuring a DRBD resource as a Physical Volume
	10.5. Adding a new DRBD volume to an existing Volume Group
	10.6. Nested LVM configuration with DRBD
	10.7. Highly available LVM with Pacemaker

	Chapter 11. Using GFS with DRBD
	11.1. GFS primer
	11.2. Creating a DRBD resource suitable for GFS
	11.3. Configuring LVM to recognize the DRBD resource
	11.4. Configuring your cluster to support GFS
	11.5. Creating a GFS filesystem
	11.6. Using your GFS filesystem

	Chapter 12. Using OCFS2 with DRBD
	12.1. OCFS2 primer
	12.2. Creating a DRBD resource suitable for OCFS2
	12.3. Creating an OCFS2 filesystem
	12.4. Pacemaker OCFS2 management
	12.4.1. Adding a Dual-Primary DRBD resource to Pacemaker
	12.4.2. Adding OCFS2 management capability to Pacemaker
	12.4.3. Adding an OCFS2 filesystem to Pacemaker
	12.4.4. Adding required Pacemaker constraints to manage OCFS2 filesystems

	12.5. Legacy OCFS2 management (without Pacemaker)
	12.5.1. Configuring your cluster to support OCFS2
	12.5.1.1. Creating the configuration file
	12.5.1.2. Configuring the O2CB driver

	12.5.2. Using your OCFS2 filesystem

	Chapter 13. Using Xen with DRBD
	13.1. Xen primer
	13.2. Setting DRBD module parameters for use with Xen
	13.3. Creating a DRBD resource suitable to act as a Xen VBD
	13.4. Using DRBD VBDs
	13.5. Starting, stopping, and migrating DRBD-backed domU’s
	13.6. Internals of DRBD/Xen integration
	13.7. Integrating Xen with Pacemaker

	Part V. Optimizing DRBD performance
	Chapter 14. Measuring block device performance
	14.1. Measuring throughput
	14.2. Measuring latency

	Chapter 15. Optimizing DRBD throughput
	15.1. Hardware considerations
	15.2. Throughput overhead expectations
	15.3. Tuning recommendations
	15.3.1. Setting max-buffers and max-epoch-size
	15.3.2. Tweaking the I/O unplug watermark
	15.3.3. Tuning the TCP send buffer size
	15.3.4. Tuning the Activity Log size
	15.3.5. Disabling barriers and disk flushes

	Chapter 16. Optimizing DRBD latency
	16.1. Hardware considerations
	16.2. Latency overhead expectations
	16.3. Tuning recommendations
	16.3.1. Setting DRBD’s CPU mask
	16.3.2. Modifying the network MTU
	16.3.3. Enabling the deadline I/O scheduler

	Part VI. Learning more about DRBD
	Chapter 17. DRBD Internals
	17.1. DRBD meta data
	17.1.1. Internal meta data
	17.1.2. External meta data
	17.1.3. Estimating meta data size

	17.2. Generation Identifiers
	17.2.1. Data generations
	17.2.2. The generation identifier tuple
	17.2.3. How generation identifiers change
	17.2.3.1. Start of a new data generation
	17.2.3.2. Start of re-sychronization
	17.2.3.3. Completion of re-synchronization

	17.2.4. How DRBD uses generation identifiers

	17.3. The Activity Log
	17.3.1. Purpose
	17.3.2. Active extents
	17.3.3. Selecting a suitable Activity Log size

	17.4. The quick-sync bitmap
	17.5. The peer fencing interface

	Chapter 18. Getting more information
	18.1. Commercial DRBD support
	18.2. Public mailing list
	18.3. Public IRC Channels
	18.4. Blogs
	18.5. Official Twitter account
	18.6. Publications
	18.7. Other useful resources

	Part VII. Appendices
	Appendix A. Recent changes
	A.1. Volumes
	A.1.1. Changes to udev symlinks

	A.2. Changes to the configuration syntax
	A.2.1. Boolean configuration options
	A.2.2. syncer section no longer exists
	A.2.3. protocol option is no longer special
	A.2.4. New per-resource options section

	A.3. On-line changes to network communications
	A.3.1. Changing the replication protocol
	A.3.2. Changing from single-Primary to dual-Primary replication

	A.4. Changes to the drbdadm command
	A.4.1. Changes to pass-through options
	A.4.2. --force option replaces --overwrite-data-of-peer

	A.5. Changed default values
	A.5.1. Number of concurrently active Activity Log extents (al-extents)
	A.5.2. Run-length encoding (use-rle)
	A.5.3. I/O error handling strategy (on-io-error)
	A.5.4. Variable-rate synchronization
	A.5.5. Number of configurable DRBD devices (minor-count)

	Appendix B. DRBD system manual pages
	drbd.conf
	drbdadm
	drbdsetup
	drbdmeta

	Index

