
white paper

Linux File Systems
Comparative Performance

2

This white paper explores comparative Linux file
system performance for enterprise Linux
deployments. Tailored for technical professionals,
it provides information for understanding the
most popular Linux file systems currently
available.

3

Table of Contents

Section 1 6

Introduction 6

Scope 6

Audience 6

Section 2 7

Executive Summary 7

Section 3 7

File Systems Overview 7

Journaling 7

File System Blocks 8

Section 4 8

Ext2 8

Features 9

Limitations 9

Tuning 9

Section 5 9

Ext3 9

Features 10

Limitations 10

Tuning 10

Journal Configuration 10

External Journal 11

Section 6 11

Reiser3 11

Features 12

Limitations 12

Tuning 12

Journal Configuration 12

4

External Journal 12

Section 7 12

Reiser4 12

Features 13

Limitations 13

Tuning 13

Journal Configuration 13

External Journal 13

Section 8 13

JFS 13

Features 14

Limitations 14

Tuning 14

External Journaling 14

Section 9 15

XFS 15

Features 15

Limitations 16

Tuning 16

External Journal 16

Data Section 16

Section 10 17

File System Support 17

Red Hat 17

SUSE 17

Section 11 17

File System Tuning 17

Noatime 18

IO Schedulers 18

5

Free Space 18

Section 12 19

Testing 19

Methodology 20

Section 13 20

Comparative Analysis 20

Write Performance 21

Read Performance 22

Re-Write Performance 23

Re-Read Performance 24

Random Write Performance 25

Random Read Performance 26

Total Average Read/Write 27

Ora-ta Performance 27

Specfp-ta Read/Write 28

File System Creation 28

Section 14 29

Summary 29

References 30

Appendix A 32

Summary of Comparative Write Performance 32

Summary of Comparative Re-Write Performance 32

Summary of Comparative Read Performance 33

Summary of Comparative Re-Read Performance 33

Summary of Comparative Random Write Performance 34

Summary of Comparative Random Read Performance 34

Appendix B 35

About the Author 35

6

Section 1

Introduction
This white paper explores comparative Linux file system

performance for enterprise Linux deployments. This is a

broad topic and, consequently, it is next to impossible to

exhaust even a significant percentage of the information on

this subject in a single document. Instead, this document

will serve as an additional source for individuals interested

in the performance comparison of popular Linux file

systems.

All performance testing was done with the open-source file

system benchmark tool named iozone. As stated on the

iozone site, iozone is useful for performing a broad file

system analysis. More information on iozone is available at:

http://www.iozone.org

The file systems tested were ext2, ext3, JFS, XFS and

reiser3. These file systems were tested using different I/O

schedulers, external journals, file system creation options

and file system mount options.

The testing was large in scope with an accumulated total of

more than 1,000 hours of testing. The raw data was

incorporated into a spreadsheet where simple, yet thorough

data analysis was performed. The results spreadsheet is

the backbone of the comparison testing. This white paper

was created as a means of explaining the results and

consequently serves as a summary of the data. The size

and format of the spreadsheet make its inclusion as an

appendix infeasible. The results are available to the public

upon request. Please contact the author of this document

if interested in obtaining an electronic copy, as further

analysis is encouraged.

The testing, although large in scope, only begins to scratch

the surface of the topic of file system performance.

Therefore, even though conclusions are drawn in this

document based on both the performance metrics and

general research, no guarantees can be made and results

will vary based on a number of factors unique to each

specific environment.

Scope

This white paper is tailored for technical professionals and

addresses comparative file system performance. It is

intended to provide the information for understanding the

most popular file system offerings available for enterprise

Linux deployments. Given the focus on the enterprise, only

Red Hat Enterprise Linux 4 and SUSE Linux Enterprise Server

9 distributions are covered. Only 32-bit (ia32) versions are

addressed in order to further reign in the scope.

Network file systems, removable media file systems, and in

general, non-journaling file systems (with the exception of

ext2) will not be covered. The scope will instead focus on

only the most popular journaling file systems for the 2.6

kernel. Because of the limitations of the 2.4 kernel and the

usage of the 2.6 kernel in current Red Hat Enterprise Linux

and SUSE Linux Enterprise Server releases, all file system

specifications and limitations are based on the 2.6 kernel.

File system tuning is addressed and tested as much as

possible, with some tuning omitted. For example, elevator

tuning, now done through the /sys file system, is not

covered because the quantity of test iterations would have

increased by a significant order of magnitude.

File system features such as Access Control Lists (ACLs),

quotes, etc., are catalogued in the feature set description of

the file systems. However, that is where the comparison

ends. There is no testing, whether functional or

performance related, done to compare these features

between file systems. In order to focus on the performance

aspect, the scope of this document omits usage of these

features.

Audience

Administrators, technical professionals and those with an

interest in Linux file systems will find the information

contained within useful. File system developers may also

find useful content, although the level of depth is not

indicative of a development-focused document.

http://www.iozone.org

7

Section 2

Executive Summary
From a performance standpoint, ext2 is almost always the

fastest file system with very few exceptions. Thanks to an

efficient design and low overhead stemming from its

journal-free design model, ext2 performance is excellent in

all scenarios.

In enterprise-class deployments, file system integrity goes

hand in hand with performance. Therefore, it is in the best

interest of most administrators to choose a journaling file

system. Ext3 offers journaling on top of the well-established

ext2 file system, leverages the extensive history of ext2 bug-

fixes, and includes a versatile collection of user space tools.

Additionally, it employs vendor support by both Red Hat and

SUSE for their enterprise Linux distributions. However, since

ext3’s journaling is an extension to the original ext2 file

system, there is merit in looking at file systems which were

designed from the ground-up to include journaling in

addition to ext3.

JFS, XFS and the Reiser family of file systems were designed

from their inception to be high-performing, journaling file

systems and each has its own unique advantages and

caveats which are detailed throughput this white paper.

When compared against each other, JFS and XFS

consistently scored impressive throughput numbers rivaling

their journaling competitors. Refer to the body of this white

paper for a variety of throughput metrics and further

information on the individual file systems and how they

stack up against each other using the open-source tool

iozone as the benchmark.

Section 3

File Systems Overview
As a precursor to the comparison data and for the sake of

completeness, some key file system concepts are included

in this section.

File systems are software components that support the I/O

infrastructure of operating systems. A file system serves as

the mechanism that allows multiple files and directories of

data to be stored on a single partition of fixed or removable

media. The file system provides the facilities for accessing,

organizing and further managing the stored data.

Data can be written directly to a disk partition in raw format,

circumventing both the file system and the buffer cache.

This method can be very efficient because the overhead of

an additional software layer is removed. However, without a

file system to generate and manage metadata, a disk

partition is limited to a single file. Raw partitions cannot be

the targets of utilities such as tar, cpio, dump, etc. -- all of

which work with the file system. Traditionally, raw partitions

are used when performance is the highest priority or when

the application itself will provide file system-like functionality

and/or manage its own cache.

For Linux file systems, files within a file system are

represented by inodes. Inodes are file system objects that

contain metadata, as well as the list of data blocks

occupied by the file. The inode is the first point of access

when the file system attempts to access a file.

Journaling

A file system journal is a log of transactions executed

against the file system. Usually, the recorded transactions

are limited strictly to modifications of the inodes, or the

metadata. The journal is updated prior to the file system

operation and then updated again to reflect the successful

completion of the file operation. Using this method, a file

system can replay its journal in the event of a system failure

to systematically determine which operations completed

successfully and which did not. This will ensure that the file

system structure remains intact in the event of a system

failure. However, this does not guarantee that the user data

itself will reflect the most recent changes.

The journal does impose additional overhead to the file

system. But because the journal is written serially and only

records metadata changes, the journal is less resource

intensive than the actual file operations, which are a

collection of random and serial reads, writes and transfers.

It is the extra overhead, and consequently the reduced

performance, that have led some administrators to suffer

reduced performance after migrating their ext2-based file

systems to journal-based file systems.

File System Blocks

File systems typically rely on blocks as the smallest unit of storage. The file system block

size is a multiple of the media sector size—512 bytes on standard hard drives. Linux does

not support a block size greater than page size, which is 4kb on Intel-based, 32-bit

systems. Therefore, even though most modern file systems support greater block sizes,

they have a practical limitation of 4kb.

File systems are built with their own internal limitations, but in the end are inherently limited

by the constraints of the Linux kernel. The following table shows the kernel limitations for

individual files and file systems:

Section 4

Ext2
In January 1993, the alpha version of the Second Extended File System (ext2) was released.

Ext2 is based on the first Extended File System (ext), but contains many improvements and

has the ability to accommodate future modifications more easily than its predecessor. It

was developed to fix problems and limitations of ext, as well as provide increased

performance. A comparison between the original ext file system and the ext2 file system

specifications are shown in the chart below:

Ext2 is arguably the most widely used file system in the Linux community. Its strong Unix

roots, long history of stability and excellent performance by even today’s standards are

contributing factors to its popularity. In general a file system’s reliability, in reference to the

reliability of the code itself, is directly related to its active lifespan. After so many years of

regular usage by an established base, the code has seen enough real-world testing and bug

fixes to establish a reliable code base.

File system state is maintained and designated as either clean when it is not mounted, not

clean when mounted in read/write mode, or erroneous when an inconsistency is detected.

The file system state is critical because there is a journal to guarantee the consistency of

the file system. Consequently, an unclean or erroneous file system must undergo a

complete check by the file system utility fsck. Unplanned system shutdowns or system

failures will often result in unclean and possibly erroneous ext2 file systems. Despite many

optimizations to decrease fsck times, they can be lengthy on large, densely populated disks.

8

9

Features

• Unique File Attributes (Linux specific)

Immutable – Read-only, cannot be written to, deleted, or

renamed.

Append only – All writes are appended to the end of file.

Cannot be deleted.

Undeletable – Cannot be deleted with this flag set.

• Secure File Deletion

Users can request secure file deletion. Ext2 will write

random data to the data blocks previously occupied by the

file in question. Therefore, obtaining raw access to the disk

will not yield direct access to the previously deleted file.

This does not guarantee that data recovery tools will not be

able to obtain the original data, but it provides an additional

level of security over a standard delete, which does not

guarantee the original data blocks will be immediately

overwritten.

• Excellent Community Support

There are numerous user-space tools available for

administration of ext2 file systems, which are readily

available and even bundled with popular distributions.

Common tools include fsck, debugfs, dump and restore that

provide maintenance and administrative functionality to ext2

file systems. Advanced tools such as ext2resize allow

growing and shrinking of the file system; ext2online

(http://ext2resize.sourceforge.net/online.html) allows growing

of a mounted ext2 file system and ore2salvage enables

(http://e2salvage.sourceforge.net/) recovery of damaged

data. There are even Windows drivers

(http://sourceforge.net/projects/ext2fsd) that allow read/write

functionality of an ext2 file system.

Limitations

• No journaling.

• Possibility of premature inode depletion.

Tuning

Ext2 is addressed in this document only as a high-water

mark for the journaling file systems. Therefore, tuning

parameters were not tested aside from running with the

different I/O schedulers.

Section 5

Ext3
Ext3 is, in effect, an enhancement of the ext2 code base

with the addition of journaling functionality. The two file

systems are so similar that an ext2 file system is both

forward and backward compatible with ext3 and all the

inherent limitations of ext2 apply to ext3. An ext3 file

system can be mounted as an ext2 file system and an ext2

file system can be converted to an ext3 file system without

data loss. Ext2-based file system utilities, such as dump

and restore, are compatible with ext3-based file systems.

Because of its roots in ext2, ext3 has been widely accepted

as a stable journaling file system and has been included in

the vanilla Linux kernel since 2.4.16.

Ext3 file system specifications are listed in the chart below:

http://ext2resize.sourceforge.net/online.html
http://e2salvage.sourceforge.net/
http://sourceforge.net/projects/ext2fsd

As a result of the similar roots, ext2 file systems can be converted to ext3. E2fsprogs, a

collection of utilities for ext2 and ext3 file systems, includes the tune2fs utility. Tune2fs

adjusts tunable file system parameters on ext2 file systems and can also add a journal to

ext2-based file systems, in turn converting them to ext3. Refer to the following link for the

exact procedure:

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-filesystem-ext3-convert.html

Converting root file systems from ext2 to ext3 requires booting off of an initial ram disk (initrd)

image prior to running tune2fs. For more information on this procedure, please refer to the

following link:

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-filesystem-ext3-convert.html

Features

• Optimized Head Movement

Although usually slower than ext2, ext3 in some instances will outperform ext2 because the

journal is designed to optimize hard disk head movement.

• Journal Versatility

The ext3 journaling capabilities are versatile. For starters, an ext3 file system can be mounted

as ext2, foregoing the journaling when performance is of the utmost importance. With

journaling enabled, there are 3 options that allow an administrator to tweak the journal based

on the application and the level of performance desired. The ext3 journal settings are covered

in the ext3 tuning section below.

• Flexible Migration

Ext2 administrators can move to ext3 by adding a journal to the file system without

reformatting using tune2fs. In the reverse case, the ext3 journal can be removed with

tune2fs, or the ext3 file system can simply be mounted as an ext2 file system.

Limitations

• Possibility of premature inode depletion.

• Held to the same restrictions as the aging ext2 file system.

Tuning

Journal Configuration

The ext3 journal is usually the source of performance disadvantages observed when

comparing the often faster ext2 to ext3. The journal mode is configurable, and is set at

mount time under the options in /etc/fstab. The three modes are as follows:

10

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-filesystem-ext3-convert.html
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-filesystem-ext3-convert.html

• data=ordered

This is the default ext3 journal setting and guarantees data

consistency. Orders write by updating data blocks then

updating the metadata. This way the metadata is always in

sync with the user data.

• data=writeback

This setting provides the best performance for ext3, but at

a reduced data integrity level. Commits file system changes

in FIFO order and data blocks can be updated after the

respective metadata update—a more aggressive write

strategy than the data=ordered journal option. File system

integrity is still guaranteed, but user data may not reflect

the most recent information in the metadata after a system

crash.

• data=journal

This setting uses a larger journal that records changes to

the file system metadata and the user data, resulting in a

longer journal replay after a system crash. In some cases

this setting can provide increased performance for database

applications, but generally results in reduced performance from

the additional overhead of a more comprehensive journal.

External Journal

By default, the ext3 journal resides on the same block

device as the rest of the file system. An external journal, as

the name implies, resides on a block device external to the

rest of the file system. By allocating a dedicated spindle to

the task of journaling, head movement on the data drive is

optimized. If the drive is heavily utilized, increased

throughput should result.

Caveats

• An external journal must be created with the same block

size as the target file system.

• Referencing the mke2fs man page, the file system journal

must be a minimum of 1024 file system blocks and a

maximum of 102,400 file system blocks. For a 100GB file

system based on the maximum allowable block size of 4k,

the journal size must be at least 4MB(1024 * 4k) and no

greater than 400 MB (102,400 * 4k).

11

Section 6

Reiser3
Reiser3 (aka reiserfs) development was originally led by

Hans Reiser of Namesys (http://www.namesys.com). It was

designed from the ground up as a space efficient, multi-

purpose, journaling file system using balanced trees

(B-trees). B-trees are designed for slower storage mediums

(hard disks for example) because they are capable of

referencing large amounts of data while minimizing I/O

overhead. B-tree usage is common in modern file systems.

More can be read on the functionality of B-trees at:

http://www.bluerwhite.org/btree.

Reiser3 was designed to handle large directories better than

other file systems while exceeding the performance of ext2

and offering guaranteed file system integrity via a journal.

Subsequently, reiser3 was the first journaling file system to

be included in the vanilla Linux kernel—fully integrated as of

2.4.1 and is the most widely used journaling file system for

Linux to date. Reiser3 is the preferred and default file

system for SUSE Linux Enterprise Server 9.

The 3.6 release of reiser3 offers the following

specifications:

Creating an External EXT3 Journal

1. Create the journal on a dedicated partition:

mke2fs -O journal_dev /dev/<external_journal_partition>

2. Create an ext3 file system on /dev/sdXY that uses the

external journal:

mke2fs -J device=/dev/<journal_partition> /dev/sdXY

3. Mount the partition (must specify file system type):

mount /dev/sdXY /mnt/sdXY -t ext3

http://www.namesys.com
http://www.bluerwhite.org/btree

Features

• Efficiency

Reiser3 does not use traditional block space allocation

where files are stored in as many fixed-size blocks as

necessary to contain them. Typically, a file system of 4k

blocks would require 2 blocks to store a file of size 4097

(4kb + 1 byte). Instead, reiser3 relies on B-trees instead of

inodes and stores all file system structures with the B-trees.

This technique allows reiser3 to avoid the efficiency pitfalls

of block-based allocation by storing multiple files within a

single block. On systems with many small files, such as a

typical user workstation, reiser3 can yield significant space

benefits. This efficiency is compounded by metadata being

stored next to the file on the hard disk platter in order to

reduce head movement when accessing small files.

• Journal Versatility

Like ext3, the reiser3 journaling capabilities are versatile.

Three options allow an administrator to tweak the journal

based on the application and the level of performance

desired. The reiser3 journal settings are covered in the

resier3 tuning section below.

• Efficiency

Namesys states that reiser3 is a general purpose file

system and is extremely efficient in a variety of situations,

including numerous directories containing numerous small

files. The versatility of reiser3 makes it a good choice for a

general purpose workstation.

Limitations

• No removable media support.

• No defragmentation utility, file system must be dumped

and restored to defragment.

Tuning

Journal Configuration

The reiser3 file system, similar to ext3, allows multiple

journaling modes set on file system mount. In fact, the

journal settings are identical between the two file systems.

An explanation of the journal settings is included in the man

page for the mount command and is also detailed as follows:

• data=ordered

This is the default reiser3 journal setting and guarantees

data consistency. Orders writes by updating data blocks

then updating the metadata. This way the metadata is

always in sync with the user data.

• data=writeback

This setting provides the best performance for reiser3, but

at a reduced data integrity level. Commits file system

changes in FIFO order and data blocks can be updated after

the respective metadata update—a more aggressive write

strategy than the data=ordered journal option. File system

integrity is still guaranteed, but user data may not reflect

the most recent information in the metadata after a system

crash.

• data=journal

This setting uses a larger journal that records changes to

the file system metadata and the user data, resulting in a

longer journal replay after a system crash. In some cases

this setting can provide increased performance for database

applications, but generally results in reduced performance

from the additional overhead of a more comprehensive

journal.

External Journal

Reiser3 does not offer external journaling capabilities.

Section 7

Reiser4
Reiser4, the next generation of the reiser line of file

systems, was released in late 2004. Because of the young

age of reiser4, Namesys states that, “It will also be some

substantial time before v4 is as stable as v3.” Instead of

enhancing the existing reiser3 code base, reiser4 is a

complete redesign of the file system. As a testament to its

stability, Namesys touts experienced development and

testing values that have attributed to a high degree of

stability in reiser4’s current form.

Reiser4 support is available as an option in the akpm tree

of the Linux kernel starting with version 2.6.8.1-mm2.

12

13

Therefore, usage of reiser4 requires usage of an

unsupported kernel, regardless of vendor, rendering it

infeasible in its current state for enterprise deployment.

For instructions on preparing a system for reiser4, including

patching the kernel, compiling the reiser4 tools, and

creating the file system, refer to the Namesys reiser4

installation guide:

http://www.namesys.com/install_v4.html

Reiser4 was not subjected to iozone testing. This

document is focused on the enterprise and usage of an

unsupported kernel, which is antithetical to maintaining a

reliable datacenter. A subsequent version of this paper will

include ext2, ext3, JFS, reiser3, reiser4 and XFS on a newer

Linux kernel when reiser4 is picked up by either Red Hat

Enterprise Linux and/or SUSE Linux Enterprise Server.

The specifications of reiser4 are listed below:

Features

• Dancing Trees

An improvement over the balancing trees in reiser3, dancing

trees are touted by Namesys as both faster and more

efficient. They work by merging insufficiently full nodes

when memory shortage triggers a flush to disk and when a

transaction closure triggers a flush to disk. Because of the

dancing tree model, reiser4 is even more space efficient

than reiser3.

• Atomicity

Reiser4 is an atomic file system; disk operations happen

completely or do not happen at all. This can prevent

consistency issues that sometimes even journaling cannot

prevent in the case of in-progress operations.

• Plug-in Infrastructure

Reiser4 not only supports plug-ins, but the architecture itself

is plug-in based to allow a very modular approach to

modifying the file system. This allows custom security

modules and changes in functionality to be added or

changed, giving the file system the potential for a long life

span.

Limitations

• Limited out of the box journal configuration.

• No journal flexibility, no external journal feature.

• Not currently supported by either Red Hat Enterprise

Linux 4 or SUSE Linux Enterprise Server 9.

Tuning

Journal Configuration

Reiser4 does not offer configurable journal settings at

mount like reiser3 or ext3.

External Journal

Reiser4 does not offer external journaling capabilities out of

the box.

Section 8

JFS
In February 2000, IBM open sourced their enterprise server

file system known as Journaling File System (JFS) to the

Linux community to further the penetration of Linux into the

enterprise datacenter. Currently, four IBM developers are in

charge of maintaining the code and integrating patches, as

well as other changes from the open source community.

The developer contact information is listed here:

JFS is available as part of the vanilla kernel in the 2.5.6

release and up, and is identified as JFS file system support

(CONFIG_JFS_FS) during the kernel build process. JFS can

be built into the kernel, or as a module.

http://www.namesys.com/install_v4.html

JFS was designed by IBM for high-throughput, heavy-load

servers that require a robust file system and the availability

of full journaling. It was originally open sourced because

there were no journal-based file systems for the Linux

operating system at the time.

JFS and Enhanced JFS differ in that JFS is optimized for 32-

bit kernels, where as Enhanced JFS is optimized for 64-bit

kernels. The standard JFS will run on both 32-bit and 64-bit

hardware, but the Enhanced JFS takes advantage of the

increased address space to offer degrees of magnitude

increase in the standard file system specifications. Aside

from the increased scaling, both versions of JFS share the

same libraries, commands, utilities, and header files.

JFS is a journaling file system, and as with most journaling

file systems, it only logs changes to metadata. Therefore,

JFS will not recover file data to a consistent state after a

system failure and data loss may occur in some situations.

Refer to the JFS Log whitepaper referenced in this document

for more information. Unlike ext3 or the reiser line of file

systems, JFS cannot be configured to log user data.

The specifications of JFS are listed below:

Features

• Mainframe Roots

Ported from the IBM AIX JFS implementation, JFS has a

history of stability in high-end IBM mainframes.

• Advanced Directory Organization

JFS has efficient algorithms for directory organization. Small

directories of 8 or less entries are stored within the directory

inode. Larger directories are sorted and stored in B+ trees,

allowing faster lookup than traditional unsorted directories.

• Maintenance Friendly

JFS has several tools available to ease maintenance and

provide as much functionality as possible without taking the

file system offline. An online defragmentation utility is

available, as well as online snapshotting of the file system

and an online file system growth utility.

Limitations

• No quota support.

• Limited removable media support.

• Cannot journal user data.

Tuning

External Journaling

To isolate the file system journal on a separate, dedicated

disk in order to optimize head movement and increase

throughput on the data disk, external journaling can be

used. According to the man pages for jfs_utils, there are

several syntax formats for creating and attaching an external

journal. Interestingly enough, one syntax works, while the

other commands all producing the error:

The following disk did not finish formatting.

To create an external journal on /dev/<external_dev>, create

a JFS file system on /dev/<jfs_partition> and attach the

journal to the file system with the following command:

mkfs.jfs –j /dev/<external_dev> /dev/<JFS_partition>

The system will warn that all data on both

/dev/<external_dev> and /dev/<JFS_partition> will be lost.

After user confirmation, mkfs will then automatically create

a working journal 0.4 times the partition size, rounding up to

the nearest megabyte. The maximum journal size is

capped at 128MB regardless of partition size.

No additional mount parameters need to be specified to

mount a JFS file system with an external journal.

14

15

Section 9

XFS
On March 30, 2000, SGI, not to be outdone by IBM,

released the 64-bit XFS file system code to the open source

community in alpha stage. At the time, the beta release of

XFS was still 6 months away. XFS was destined to replace

SGI’s aging EFS file system, which was reaching its limits on

large files and large file systems. It was not until May 1,

2001--13 months later--that the 1.0 version of XFS was

released. On September 16, 2002, XFS was merged into

Linus’s 2.5 kernel tree, and was available in the vanilla Linux

kernel since the 2.6.0 release. It is set with the XFS file

system support kernel option (CONFIG_XFS_FS).

XFS is designed to be an efficient and high-performing file

system developed to manage extremely large file systems

and stream bandwidth-intensive content in real time. XFS is

SGI’s standard file system, shipping on everything from

uniprocessor workstations to their SMP server line. Despite

lack of widespread XFS adoption, it is in fact the oldest

journaling file system for Linux.

The specifications of XFS are listed below:

Features

Direct I/O

XFS has the ability to write directory to user space I/O,

completely bypassing the file system buffer cache. This is

beneficial to certain database applications that utilize their

own cache manager. As an example, Oracle typically

recommends raw disk partitions not just for lack of file

system overhead, but also to avoid the file system buffer

cache.

Delayed Allocation

XFS is the only file system mentioned in this document that

uses delayed allocation. When a file write is performed,

total free disk space is decremented, but the actual write

does not occur; the data is only written out to disk when

required. By doing this, XFS can combine writes to increase

sequential accesses, reduce total writes to disk by making

changes in main memory when possible, and eliminate

writes that become obsoleted before they are finally

committed to disk. This technique has the added benefit of

reduced disk fragmentation.

Scalability

XFS uses allocation groups which act as independent file

systems within an XFS file system. Multiple allocation

groups can be accessed in parallel by the kernel to provide

efficient concurrent access on SMP systems. The allocation

group count is specified on file system creation.1

Guaranteed Rate I/O (GRIO)

Guaranteed Rate I/O (GRIO) is a unique XFS feature that

allows applications to reserve bandwidth from the file

system. A process requests to receive data from an XFS

file system at a specific rate for a specific length of time.

As long as GRIO request is within the capabilities of the

system, the request will be met. This can be useful when

streaming real-time audio or video, or when interacting with

an information source that is only available for brief periods

of time.

Two XFS utilities allow GRIO functionality:

cfg - Scans the hardware available on the system and

creates a file, /etc/grio_config, that describes the rates that

can be guaranteed on each I/O device

ggd - Manages the I/O-rate guarantees that have been

granted to processes on the system

1 XFS maximum block size is 64k and it will allow you to create a file system with this block size. However, because the
Linux page size of 4kb dictates the maximum block size, the 64kb device is un-mountable. The error received is:

linux kernel: XFS: Attempted to mount file system with blocksize 65536 bytes
linux kernel: XFS: Only page-sized (4096) or less blocksizes currently work

Limitations

• No undelete functionality.

• No disk quota support.

• Cannot journal user data.

• Limited removable media support.

Tuning

External Journal

The file system journal can be externalized to optimize head

movement and increase throughput on the data drive. To

create a file system on the first partition on the first SCSI

disk with an external journal located on the first partition on

the second SCSI disk, use:

mkfs.xfs -l logdev=/dev/<external_dev> /dev/<xfs_partition>

ex. – mkfs.xfs –l logdev=/dev/sdc1 /dev/sdb1

If size is not specified, mkfs.xfs will determine a log size

based on the file system. However, if the file system is too

large, the mkfs command will not execute, returning with

error message “log size xxxxxx blocks too large, maximum

size is 65536 blocks.” Note that even though the error

message states that a log size up to 64k blocks is

acceptable, a subsequent mkfs command specifying a 64k

block log returns this:

log size 268435456 bytes [64k blocks] too large, maximum

size is 134217728 bytes [32k blocks].

Further supporting the latter error message is the fact that

the attempted creation of a 63k block journal (one less than

64k), as well as 33k block journal (one more than 32k) yield

the same error. Therefore, an external journal of a

maximum of 32k blocks [size=32768b] must be specified.

Note: An externally journaled XFS file system will not mount

unless the mount command references the external log.

This differs from most file systems, where external journal

location can be determined by the data disk. Usage of the

following syntax when mounting the file system is required:

mount –t XFS –o logdev=/dev/<ext_journal>

/dev/<xfs_partition> /<mount_point>

While cumbersome, mandatory specification of an external

XFS journal can be beneficial from an administrative

standpoint because listing the mounted file systems via the

mount command immediately informs the user of the

external journal configuration. An example of how the

external journal mount option is displayed when issuing the

mount command is displayed here:

type xfs (rw,logdev=/dev/<ext_journal>)

Data Section

The data section of an XFS file system can be tuned at file

system creation. Notable performance chances include

altering the size and/or number of allocation groups. These

two values are directly related, and only one needs to be

modified. Increasing the number of allocation groups allows

increased parallelism, additional resource consumption, and

implied throughput increases. The default number of

allocation groups is 8, unless the file system is greater than

8GB. After which the number of allocation groups

periodically doubles -- to 16, 32, and so on. The syntax for

creating an XFS file system with a specific allocation group

count:

mkfs.xfs –d agcount=<agcount>

The sector size of an XFS file system can be specified,

ranging from 512 bytes to 32k, but less than or equal to

the file system block size. Since the file system block size

is limited to 4k, the sector size defaulted to the maximum

value of 4k. Smaller values were not tested.

16

17

Section 10

File System Support

Red Hat

Red Hat Enterprise Linux 4 only allows usage of the ext3 file

system during the installation process. Red Hat states,“In

our judgment, ext3 currently has the best fit for our

customers' requirements. We will continue to evaluate

other file systems for inclusion in future versions of Red Hat

Linux.”

Despite Red Hat’s limited file system selection, they have

chosen a journaling file system with the flexible journaling

modes and external journal support. Ext3 is built on the

time-tested ext2 code base and has also undergone several

Red Hat-specific improvements to further increase its

reliability and performance.

The Red Hat-specific patches applied to the vanilla ext3

code base are listed here:

linux-2.6.5-ext3-online-resize.patch

linux-2.6.5-ext3-reservations.patch

linux-2.6.8-ext3-reservations-update.patch

linux-2.6.9-ext3-cleanup-abort.patch

linux-2.6.9-ext3-file-limit.patch

linux-2.6.9-ext3-handle-bitmapdel.patch

linux-2.6.9-ext3-handle-double-revoke.patch

linux-2.6.9-ext3-mbcache.patch

linux-2.6.9-ext3-release-race.patch

linux-2.6.9-ext3-umount-leak.patch

SUSE

SUSE Linux Enterprise Server 9 supports ext2, ext3, reiser3,

XFS and JFS. These file systems are all available as options

during the disk partitioning portion of the installation wizard.

SUSE provides excellent file system flexibility and fully

supports usage of all file systems mentioned in this

document, with the exclusion of reiser4 at the current time.

Section 11

File System Tuning
For this document, all file system tuning will be limited to

parameters used during file system creation, I/O scheduler

selection and mount options. Options that disable

journaling on journal-based file systems such as the JFS

nointegrity mount option or the reiser3 nolog mount option

were not tested. The focus of this document is on the

enterprise. Because file system integrity and fast file

system recovery are critical considerations in enterprise

deployments, there is little interest in comparing file

systems with journaling disabled.

However, some ext2 performance testing was done; the

results were used as a reference point for comparing the

performance differences between a stable, well-performing,

non-journaling file system and the current generation of high-

performance, journaling file systems.

Also note that not all performance tuning possibilities were

exhausted. Tuning parameters on the cutting block were

those deemed counterintuitive for performance gains,

inapplicable for enterprise environments or features that

would not be utilized by iozone. Directory search hashes,

security features, and advanced application features were

among the tuning parameters omitted from testing.

On 32-bit hardware, linux file systems have a maximum

effective block size of 4kb. Most allow usage of smaller

block sizes with the minimum size being equal to the hard

disk sector size of 512 bytes. Block sizes smaller than 4k

were not tested, as large block sizes usually provide better

performance at the expense of space efficiency when

storing small files.

It is important to understand that the 4k block size

limitation is not because of the file system itself; in fact

many file systems support larger block sizes such as XFS’s

64kb maximum. Instead, this is an ia32 Linux operating

system limitation.

Noatime

Most modern file systems store and maintain three

separate time stamps per file. These are created, last

modified and last accessed. The last accessed time

stamp, by virtue of its function, may have to be updated

quite frequently. For example, listing the contents of a

directory will cause all the containing files to receive new

last accessed time stamps, amassing additional writes and

adding to the file system overhead.

The file system mount option noatime can be used to

disable updating the last accessed time stamp resulting in

reduced file system overhead. Usage of the noatime flag is

tested. Systems with fewer large files, such as database

servers, will most likely not experience noticeable

improvement with the usage of the noatime mount option.

IO Schedulers

The vanilla Linux kernel bundles four different I/O schedulers

as part of the package. These schedulers are as follows:

anticipatory (as)

completely fair queuing (cfq)

deadline (deadline)

noop (noop)

The vanilla 2.6.x kernel sets the default scheduler for all

block devices as anticipatory. Both SUSE Linux Enterprise

Server 9 and Red Hat Enterprise Linux 4 distributions use

the completely fair queuing scheduler as the default. The

I/O scheduler is changed for all block devices by modifying

the elevator kernel boot parameter, as per the following

syntax used in /boot/grub/menu.lst:

elevator=as | cfq | deadline | noop

The I/O scheduler can also be set on a per block device

basis through echoing the scheduler designation in

/sys/block/<sdx>/queue/scheduler.

Free Space

Many file systems run at peak efficiency when the file

system has ample free space. In general, a file system

should have no less than 15 – 20% free space in order to

run at its maximum performance level. This is a caveat of

the file system itself and the recommended amount of free

space varies between file systems. Unfortunately, there are

few specifics available on this metric in relation to the

individual file systems, so a general conservation principle

should be applied where no more than 80 – 85% of a disk

capacity is consumed.

Even greater performance can be achieved by implementing

an aggressive policy restricting the space utilization of hard

disks to the lowest percentages possible. Hard disks store

data on the outer edges of hard disk platters first. Since

hard disk platters spin at a constant angular velocity, the

linear velocity at the outer edge of the platter is significantly

faster than at the inner edges of the platter, resulting in

faster seek times and faster transfer rates. While not

necessarily a cost-effective performance solution, this

should be taken into consideration for high-performance

deployments.

18

19

Section 12

Testing
At the core of the test environment resides a Unisys ES7000/540 server. The ES7000/540

server is a 32-processor, Intel-based, 32-bit server built on mainframe architecture. The

server was partitioned into an 8-processor system for the purpose of testing. More

information about the ES7000/540 server can be found at:

http://www.unisys.com/products/es7000__linux/es7000__32__bit__servers.htm

All testing was done with SUSE Linux Enterprise Server 9 RTM. Duplicating the full gamut of

testing on an identical Red Hat Enterprise Linux 4 environment would have been ideal.

Unfortunately, in order to keep the testing scope to manageable proportions, all testing was

done on SUSE Linux Enterprise Server 9 RTM.

The high-level specifics of the server configuration:

1x Unisys ES7000/540 G3 V1.1, Single Cell2

8x Intel Xeon MP 3.0GHz 4.0MB L3 cache, HT disabled

1x QLogic 2310F FC-HBA

64.0MB L4 cache3

8.0GB Main Memory4

The SAN configuration:

1x EMC CX600, dual SP equipped, single SP used (SPA)

4022MB SPA Cache

(1) 16-disk RAID-0 LUN (I/O testing target)

Seagate ST336753 36GB 15K rpm Fibre-Channel disks

(1) 2-disk RAID-1 LUN (external journal target, where applicable)

Seagate ST336753 36GB 15K rpm Fibre-Channel disks

1x Brocade Silkworm 3800 Fibre Channel Switch

2 The Unisys ES7000/540 server is an Intel-based SMP server configurable with up to 32 Intel Xeon MP processors. The ES7000 Family of Servers is a high-end server line designed

with performance and redundancy in mind. The ES7000/540 is comprised of 4 “cells,” which are physical and logical hardware units containing processors and memory that can

be used to build a single 32-processor partition, 4 separate 8-processor partitions, or various cell combinations in-between.

3 The Unisys ES7000/540 includes 32MB of shared, Level-4 cache for each 4 processor group. Each cache units supports multiple banks and independent read/write ports, tracks

up to 64 processor requests, and features cache lines specifically tailored for Intel processors.

4 Each ES7000 cell contains a minimum of 4.0GB and a maximum of 16.0GB of main memory. 8.0GB was chosen for testing as it is the most commonly ordered customer

configuration. The storage technology used is SDRAM DIMMs.

http://www.unisys.com/products/es7000__linux/es7000__32__bit__servers.htm

20

The operating system:

SUSE Linux Enterprise Server 9 RTM (SLES 9)

Kernel Version: 2.6.5-7.97-bigsmp

file systems5 :

and benchmark tool:

Iozone revision 3.226 (compiled for ia32 Linux)

Methodology

In order to achieve high levels of test integrity and

repeatability, certain testing methodologies were used.

These methodologies are listed below:

• All tests were run twice.

• Each metric was averaged with the corresponding metric

for the subsequent test.

• System was rebooted between each test.

• Software environment remained unchanged during testing.

• The two EMC CX-Series LUNs were on the same SP,

isolated from the other LUNs on the storage system.

Section 13

Comparative Analysis
This section details the comparative read, write, re-write,

re-read, random write, and random read performance

between the tested file systems.

5 File System versions were obtained from the output of a “mkfs.<fs_name> -V” command.

Write Performance

Write performance was analyzed on several scales. For each test performed, numbers were

calculated for maximum6, minimum7, total average8, target average9, ora-ta10 and

specfp-ta11 write throughput. Also, an overall write score was artificially created by taking

the summation of the five above mentioned categories. The overall write score serves as a

general indicator of how the file system performs in comparison to the other file systems.

For each file system, the best of each category was compared against the best of each

category for the competing file systems. For example, the best ext3 test in regards to total

average write performance was compared against the best JFS test in regards to total

average write performance. Using this technique, we can see how the file systems

compare with each other in their respective best-case scenarios.

For best maximum write throughput, XFS came out on top, with a value of 692,055.00KB/s.

It beat the second place file system, JFS, by a margin of 11.27%.

For best minimum write throughput, XFS came out on top, with a value of 74,001.00KB/s.

It beat the second place file system, JFS, by a margin of 19.91%.

For best total average write throughput, JFS came out on top, with a value of

109,455.16KB/s. It beat the second place file system, XFS, by a margin of 5.14%.

For best target average write throughput, JFS came out on top, with a value of

142,904.89KB/s. It beat the second place file system, XFS, by a margin of 20.10%.

For best ora-ta write throughput, JFS came out on top, with a value of 124,183.84KB/s.

It beat the second place file system, XFS, by a margin of 13.42% increase.

For best specfp-ta write throughput, JFS came out on top, with a value of 108,244.74KB/s.

It beat the second place file system, ext2, by a margin of 7.85%.

JFS exhibited the best overall write performance, but XFS produced almost identical results.

The best overall write score for JFS was obtained in the jfs_noatime run, where a score of

1,147,056.63 was obtained. XFS was very comparable, with a score of 1,145,665.21--only

0.12% worse. After JFS and XFS, the remaining scores drop off dramatically. The last-place

file system in this category, ext3, produced a best overall write score of 662,505.87, a

considerable 42.24% less than the JFS score.

21

6 The maximum metric is obtained by extracting the maximum value among the collective data sets of both runs for any given test.

7 The minimum metric is obtained by extracting the minimum value among the collective data sets of both runs for any given test.

8 The total average metric is obtained by averaging all values collected between the both runs for any given test.

9 Total target average metric is obtained by first averaging each corresponding metric for both runs for any given test. Then, the subset encompassing record sizes 1kb to 32kb and

file sizes 4kb to 2MB is averaged to produce the target average metric. This metric is designed to provide a more applicable measurement of file system performance than total

average when applied to real-world situations.

10 ora-ta, or Oracle Target Average, is obtained by first averaging each corresponding metric for both runs for any given test. Then, the subset encompassing record sizes 4kb to

16kb and file sizes 4kb to 4GB is averaged to produce the ora-ta metric. This metric is designed to provide a more applicable measurement of file system performance than total

average when applied to Oracle deployments. The record size and file size subset was chosen by analyzing strace logs from an Oracle server. Of course, the subset chosen will

not necessarily represent any specific real-world Oracle deployment, but it can provide a good indicator of potential Oracle performance for the given file system.

11 specfp-ta, or SpecFP Target Average, is obtained by first averaging each corresponding metric for both runs for any given test. Then, the subset encompassing record sizes 1 kb

to 4 kb and file sizes 4kb to 4GB is averaged to produce the specfp-ta metric. This metric is designed to provide a more applicable measurement of file system performance than

total average when applied to benchmarking with the SpecFP benchmark tool. The record size and file size subset was chosen by analyzing strace logs from an in-house SpecFP

benchmark run on an ES7000 server.

22

Read Performance

Read performance was analyzed on several scales. For each test performed, numbers were

calculated for maximum, minimum, total average, target average, ora-ta and specfp-ta read

throughput. Also, an overall read score was artificially created by taking the summation of

the five above categories. The overall read score serves as a general indicator of how the

file system performs in comparison to the other file systems.

For each file system, the best of each category was compared against the best of each

category for the competing file systems. For example, the best ext3 test in regards to total

average read performance was compared against the best JFS test in regards to total

average read performance. Using this technique, we can see how the file systems

compare with each other in their respective best-case scenarios.

For best maximum read throughput, the file systems compared almost exactly. Ext2, ext3,

JFS and XFS all recorded a value of 4,000,000.00KB/s. Reiser3, the only file system not

to record this number recorded a maximum score of 3,924,555.00. Since the reiser3

score is a mere 1.89% less than the other scores, it is assumed this deviation is a result

of random testing variation.

For best minimum read throughput, ext3 came out on top, with a value of 201,009.00KB/s.

It beat the second place file system, XFS, by 1.05%.

For best total average read throughput, ext3 came out on top, with a value

of481,221.25KB/s. It beat the second place file system, ext2, by a margin of 1.32%.

For best target average read throughput, ext3 came out on top, with a value of

525,976.81KB/s. It beat the second place file system, ext2, by a margin of 2.53%.

For best ora-ta read throughput, ext3 came out on top, with a value of 532,294.45KB/s.

It beat the second place file system, ext2, by a margin of 0.92%.

For best specfp-ta read throughput, ext2 came out on top, with a value of 488,116.46KB/s.

It beat the second place file system, ext2, by a margin of 1.78%.

Ext2 scored the best overall read score -- 6,177,114.22 -- compared to ext3’s second place

score of 6,152,515.24. Considering the benefit of ext3 journaling, ext2’s 0.40%

performance benefit is negligible. It should be noted that in the read tests, all the file

systems exhibited very similar performance numbers; in fact, the difference between the

best and the worst overall read score was a scant 2.55%.

The best overall ext3 score was obtained in the ext3_wb_noatime_dl run, where ext3 was

configured with the data=writeback and noatime mount options, and run with the deadline

I/O scheduler.

Re-Write Performance

Re-write performance was analyzed on several scales. For each test performed, numbers

were calculated for maximum, minimum, total average, target average, ora-ta and specfp-ta

re-write throughput. Also, an overall re-write score was artificially created by taking the

summation of the five above mentioned categories. The overall re-write score serves as a

general indicator of how the file system performs in comparison to the other file systems.

For each file system, the best of each category was compared against the best of each

category for the competing file systems. For example, the best ext3 test in regards to total

average re-write performance was compared against the best JFS test in regards to total

average re-write performance. Using this technique, we can see how the file systems

compare with each other in their respective best-case scenarios.

For best maximum re-write throughput, reiser3 came out on top, with a value of

120,896.00KB/s. It beat the second place file system, JFS, by a margin of 0.41%.

For best minimum re-write throughput, JFS came out on top, with a value of 86,441.00KB/s.

It beat the second place file system, XFS, by a margin of 3.96%.

For best total average re-write throughput, JFS came out on top, with a value of

110,386.72KB/s. It beat the second place file system, ext2, by a margin of 0.91%.

For best target average re-write throughput, JFS came out on top, with a value of

112,430.98KB/s. It beat the second place file system, ext2, by a margin of 1.44%.

For best ora-ta re-write throughput, JFS came out on top, with a value of 113,429.85KB/s.

It beat the second place file system, ext2, by a margin of 1.53%.

For best specfp-ta re-write throughput, JFS came out on top, with a value of

105,005.71KB/s. It beat the second place file system, ext2, by a margin of 0.88%.

JFS exhibited the best overall re-write performance, with XFS very close — within 1.98%.

The remaining file systems were also very comparable, with only a 5.65% difference

between the best and worst overall scores.

The best overall re-write score for JFS was the jfs_xj_noop run, where JFS recorded a score

of 646,027.27. The run consisted of specifying an external journal and running with the

noop scheduler. Despite the excellent score with the noop scheduler, the jfs_xj_dl run

recorded a 639,206.53 score using the deadline scheduler--only a 1.06% drop in

performance. The versatility of the deadline scheduler is worth the almost inconsequential

performance difference.

23

24

Re-Read Performance

Re-read performance was analyzed on several scales. For each test performed, numbers

were calculated for maximum, minimum, total average, target average, ora-ta and specfp-ta

re-read throughput. Also, an overall re-read score was artificially created by taking the

summation of the five above mentioned categories. The overall re-read score serves as a

general indicator of how the file system performs in comparison to the other file systems.

For each file system, the best of each category was compared against the best of each

category for the competing file systems. For example, the best ext3 test in regards to total

average re-read performance was compared against the best JFS test in regards to total

average re-read performance. Using this technique, we can see how the file systems

compare with each other in their respective best-case scenarios.

For best maximum re-read throughput, ext2 came out on top, with a value of

8,000,000.00KB/s. It beat the second place file system, ext3, by a margin of 2.44%.

For best minimum re-read throughput, reiser3 came out on top, with a value of

285,281.00KB/s. It beat the second place file system, JFS, by a margin of 0.11%.

For best total average re-read throughput, ext3 came out on top, with a value of

1,514,149.15KB/s. It beat the second place file system, JFS, by a margin of 2.70%.

For best target average re-read throughput, ext3 came out on top, with a value of

2,731,142.96KB/s. It beat the second place file system, JFS, by a margin of 1.42%.

For best ora-ta re-read throughput, ext3 came out on top, with a value of 2,001,637.73KB/s.

It beat the second place file system, JFS, by a margin of 5.19%.

For best specfp-ta re-read throughput, ext3 came out on top, with a value of

1,255,214.02KB/s. It beat the second place file system, JFS, by a margin of 2.90%.

Ext2 exhibited the best overall re-read performance with a score of 15,466,564.01, with its

journaling counterpart—ext3—within 0.17% at 15,440,345.68. No other file system was

able to break the 15,000,000 mark, with the next best file system—reiser3—coming in at

12,742,470.92. The difference between the best and the worst overall re-read

performance was 24.10%.

Considering the almost identical performance of ext3 and the added journal integrity, ext3 is

the clear winner. The best overall re-read run for ext3 was obtained in the

ext3_wb_noatime_dl_xj run, where ext3 was configured with an external journal, run with

the data=writeback journal option, the noatime mount option and the deadline scheduler

was used.

Oddly enough, neither XFS nor JFS obtained a single first place score. In fact, XFS scored

last place in every category. In the best maximum re-read category, ext2 scored 72.14%

better than XFS and 53.18% better than JFS!

Random Write Performance

Random write performance was analyzed on several scales. For each test performed,

numbers were calculated for maximum, minimum, total average, target average, ora-ta and

specfp-ta random write throughput. Also, an overall random write score was artificially

created by taking the summation of the five above categories. The overall random write

score serves as a general indicator of how the file system performs in comparison to the

other file systems.

For each file system, the best of each category was compared against the best of each

category for the competing file systems. For example, the best ext3 test in regards to total

average random write performance was compared against the best JFS test in regards to

total average random write performance. Using this technique, we can see how the file

systems compare with each other in their respective best-case scenarios.

For best maximum random write throughput, JFS came out on top, with a value of

227,559.00KB/s. It beat the second place file system, XFS, by a margin of 2.05%.

For best minimum random write throughput, JFS came out on top, with a value of

33,290.00KB/s. It beat the second place file system, reiser3, by a margin of 0.87%.

For best total average random write throughput, JFS came out on top, with a value of

136,866.80KB/s. It beat the second place file system, ext2, by a margin of 1.48%.

For best target average random write throughput, JFS came out on top, with a value of

153,029.19KB/s. It beat the second place file system, ext2, by a margin of 1.43%.

For best ora-ta random write throughput, JFS came out on top, with a value of

141,167.47KB/s. It beat the second place file system, ext2, by a margin of 1.22%.

For best specfp-ta random write throughput, JFS came out on top, with a value of

126,405.71KB/s. It beat the second place file system, ext2, by a margin of 0.60%.

JFS exhibited the best overall random write performance, logging a score of 810,465.53.

This was obtained in the jfs_xj run, where JFS was configured with an external journal.

There was little variation between file systems in this category with the last place file

system, ext3, scoring 757,645.99, a 6.52% decrease from the JFS score.

25

26

Random Read Performance

Random read performance was analyzed on several scales. For each test performed,

numbers were calculated for maximum, minimum, total average, target average, ora-ta and

specfp-ta random read throughput. Also, an overall random read score was artificially

created by taking the summation of the five above mentioned categories. The overall

random read score serves as a general indicator of how the file system performs in

comparison to the other file systems.

For each file system, the best of each category was compared against the best of each

category for the competing file systems. For example, the best ext3 test in regards to total

average random read performance was compared against the best JFS test in regards to

total average random read performance. Using this technique, we can see how the file

systems compare with each other in their respective best-case scenarios.

For best maximum random read throughput, ext3 came out on top, with a value of

4,056,575.00KB/s. It beat the second place file system, reiser3, by a margin of 0.34%.

For best minimum random read throughput, ext3 came out on top, with a value of

171,064.00KB/s. It beat the second place file system, XFS, by a margin of 0.77%.

For best total average random read throughput, ext3 came out on top, with a value of

1,369,537.82KB/s. It beat the second place file system, ext2, by a margin of 2.32%.

For best target average random read throughput, ext3 came out on top, with a value of

2,063,384.40KB/s. It beat the second place file system, ext2, by a margin of 2.34%.

For best ora-ta random read throughput, ext3 came out on top, with a value of

1,583,687.65KB/s. It beat the second place file system, ext2, by a margin of 1.75%.

For best specfp-ta random read throughput, ext2 came out on top, with a value of

894,261.81KB/s. It beat the second place file system, reiser3, by a margin of 3.87%.

Similar to the read performance, all the file systems exhibit very comparable random read

performance when properly tuned. Overall, ext3 scored the best overall random read score

of 10,009,709.67. The second place file system, ext2, scored 1.93% worse, and the

difference between the best and worst performers in this category was only 5.59%.

However, ext3 was the only file system to break a score of 10,000,000 in the overall

random read score category. This score was obtained on the ext3_wb_noatime_dl run,

where the ext3 file system was mounted with both the data=writeback and noatime options

and the deadline I/O scheduler was used.

27

Total Average Read/Write

The total average is the average of all the data points for a

test run, comprising a wide variety of record sizes and file

sizes. Specifically, record sizes from 1k to 1MB were tested

and file sizes from 4kb to 4GB were tested. While

somewhat unrealistic when applied directly to real-world

workloads, this measurement provides a good indicator for

the flexibility of a file system. This metric shows which file

systems produced the greatest aggregate numbers in the

read tests and the write tests, suggesting the raw power of

the file system.

As illustrated in the chart above, ext2 generated the best

overall numbers. Focusing on journaling file systems, JFS

and XFS achieved scores of 576,812.61 and 574,300.44

respectively and offer performance within 1% of ext2.

Ora-ta Performance

Ora-ta performance is an artificial score created by summing

the best ora-ta write score and the best ora-ta read score

for a file system. The ora-ta scores are generated by taking

a subset of the data points for a test. The subset consists

of all data points in the area occupied by record sizes

ranging from 4kb to 16kb and file sizes ranging from 4kb to

4GB. This subset was chosen based on strace records of

an Oracle server under load. This score is not necessarily

indicative of all Oracle deployments and actual results will

vary based on the environment and workload experienced.

This score is intended to serve as a general guideline for

Oracle performance based on file system.

Ext2 scored the best ora-ta read/write score, but JFS and

XFS were once again within 1% of ext2’s high water mark

and offer guaranteed file system integrity.

28

Specfp-ta Read/Write

Specfp-ta performance is an artificial score created by

summing the best specfp-ta write score and the best

specfp-ta read score for a file system. The specfp-ta scores

are generated by taking a subset of the data points for a

test. The subset consists of all data points in the area

occupied by record sizes ranging from 1kb to 4kb and file

sizes ranging from 4kb to 4GB. This subset was chosen

based on strace records of a server under load while

running the specfp benchmark. This score is not indicative

of all specfp test beds or test scenarios and actual results

will vary based on a number of factors. Instead, this score

is intended to serve as a general guideline for specfp

performance based on file system.

JFS scored the best specfp-ta read/write score by a

journaled file system. Once again, we see reiser3 at the

bottom end of the performance comparison.

File System Creation

It is rare that an administrator or user is in a position where

the time to create a new file system is a deciding factor

when selecting a file system. Nevertheless, in disaster

recovery planning for mission critical systems, every aspect

of system recovery must be addressed and time-efficient

procedures are the backbone of a solid contingency plan.

For whatever value the reader may find, included is a graph

showing the amount of time to create a new file system.

The target of the file system is a single, primary partition

occupying the total space on a 16-disk RAID 0 LUN with a

raw capacity of 566,772,105,216 bytes (527.848GB).

Even more interesting than JFS’s leading file system creation

time of 2.04 seconds is that ext2 and ext3 are significantly

slower than their competitors—each taking in excess of 4

minutes to create a file system.

29

Section 14

Summary
Overall, JFS and XFS offer pack-leading performance in a

wide variety of scenarios and can stand head to head

against ext2 from a performance standpoint. JFS and XFS

offer journaling to guarantee file system integrity, a robust

collection of user-space tools, fast file system creation, and

in the case of XFS, unique enterprise features such as

Guaranteed Rate I/O (GRIO). For an enterprise deployment,

JFS and XFS are both excellent choices.

Between JFS and XFS, JFS offers slightly better overall

performance and a smaller deviation of throughput metrics

than XFS, where as XFS offers slightly better specfp-ta

performance. As for limitations, neither XFS nor JFS offer

journaling of user data.

If reliability is a concern that complicates a decision to

move off of ext2/ext3, remember that XFS is the oldest

journaling file system for Linux (just not the first in the

mainstream kernel) and ported from the file system shipped

with the entire line of SGI hardware. IBM has a similar

philosophy and bundles JFS in their enterprise server line.

Both are listed as “Development Status: 5 -

Production/Stable” under their respective SourceForge sites.

The combination of excellent performance, guaranteed file

system integrity, and strong roots as mainframe-class file

systems lends to the enterprise credibility of both JFS and

XFS.

Looking forward, reiser4 is exceptionally interesting on paper

and is worth keeping an eye on. As a next-generation file

system, the feature list is well encompassing—supporting

removable media, long file names in excess of 1024

characters, atomic operations, and a plug-in interface to

provide a means of customization and long lifespan for the

file system. The downsides of reiser4 include non-existent

enterprise distribution support, unproven reliability, and

questionable performance given the relatively lackluster

iozone metrics generated by its predecessor reiser3. In

regards to reiser4 performance, Namesys states that

reiser4 is the fastest file system, and has benchmarks to

prove it at: http://www.namesys.com/benchmarks.html.

Before deciding on the appropriate file system, be sure to

verify that the operating system vendor will support the

decision. Refer to the File System Support section for this

information.

http://www.namesys.com/benchmarks.html

30

References

An In-Depth Look at ReiserFS

http://www.linuxplanet.com/linuxplanet/tutorials/2926/4/

Appendix A. File Systems in Linux / A.4. Large File Support in Linux

http://www.novell.com/documentation/suse91/suselinux-adminguide/html/apas04.html

Design and Implementation of the Second Extended File System

http://e2fsprogs.sourceforge.net/ext2intro.html

Ext2 Introduction

http://web.mit.edu/tytso/www/linux/ext2intro.html

Ext3 External Journal How to

https://listman.redhat.com/archives/ext3-users/2003-September/msg00003.html

Ext3 FAQ

http://batleth.sapienti-sat.org/projects/FAQs/ext3-faq.html

File System Comparisons

http://en.wikipedia.org/wiki/Comparison_of_file_systems#fn_4

JFS

http://jfs.sourceforge.net

JFS Log White Paper

http://jfs.sourceforge.net/project/pub/jfslog/jfslog.pdf

JFS Tuning

http://www.hp.com/products1/unix/operating/infolibrary/whitepapers/JFS_Tuning_1.pdf

Journaled File Systems

http://www.webopedia.com/TERM/J/journaled_file_system.html

Large File Support in Linux

http://www.suse.de/~aj/linux_lfs.html

Linux ext3 FAQ

http://batleth.sapienti-sat.org/projects/FAQs/ext3-faq.html

http://www.linuxplanet.com/linuxplanet/tutorials/2926/4/
http://www.novell.com/documentation/suse91/suselinux-adminguide/html/apas04.html
http://e2fsprogs.sourceforge.net/ext2intro.html
http://web.mit.edu/tytso/www/linux/ext2intro.html
https://listman.redhat.com/archives/ext3-users/2003-September/msg00003.html
http://batleth.sapienti-sat.org/projects/FAQs/ext3-faq.html
http://en.wikipedia.org/wiki/Comparison_of_file_systems#fn_4
http://jfs.sourceforge.net
http://jfs.sourceforge.net/project/pub/jfslog/jfslog.pdf
http://www.hp.com/products1/unix/operating/infolibrary/whitepapers/JFS_Tuning_1.pdf
http://www.webopedia.com/TERM/J/journaled_file_system.html
http://www.suse.de/~aj/linux_lfs.html
http://batleth.sapienti-sat.org/projects/FAQs/ext3-faq.html

31

Open source: JFS project Web Site

http://jfs.sourceforge.net

Open Source XFS for Linux Datasheet

http://www.sgi.com/pdfs/2508.pdf

Performance Management Guide – Monitoring and Tuning File Systems

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/prftungd57.htm#HDRJ12A04N2001DIFF

Scalability and Performance in Modern Filesystems

http://linux-xfs.sgi.com/projects/xfs/papers/xfs_white/xfs_white_paper.html

Tuning SUSE Linux Enterprise Server on IBM e-server xSeries Servers

http://www.redbooks.ibm.com/redpapers/pdfs/redp3862.pdf

Whitepaper: Red Hat's New Journaling File System: ext3

http://www.redhat.com/support/wpapers/redhat/ext3/

XFS

http://oss.sgi.com/projects/xfs

XFS mkfs.xfs

http://www.die.net/doc/linux/man/man8/mkfs.xfs.8.html

http://jfs.sourceforge.net
http://www.sgi.com/pdfs/2508.pdf
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/prftungd57.htm#HDRJ12A04N2001DIFF
http://linux-xfs.sgi.com/projects/xfs/papers/xfs_white/xfs_white_paper.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp3862.pdf
http://www.redhat.com/support/wpapers/redhat/ext3/
http://oss.sgi.com/projects/xfs
http://www.die.net/doc/linux/man/man8/mkfs.xfs.8.html

32

Appendix A

Summary of Comparative Write Performance Summary of Comparative Re-write Performance

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

H[W� �������� �� ������ ��������

UHLVHU� �������� �� ������ ��������

H[W� �������� �� ������ �������

-)6 �������� �� ������ �������

;)6 �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

UHLVHU� �������� � ������ �������

H[W� �������� � ������ �������

H[W� �������� � ������ �������

-)6 �������� � ������ �������

;)6 �������� � EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

H[W� �������� � ������ �������

UHLVHU� �������� � ������ �������

H[W� �������� �� ����� ������

;)6 �������� �� ����� ������

-)6 �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

H[W� �������� � ������ �������

UHLVHU� �������� � ������ �������

H[W� �������� �� ������ �������

;)6 �������� �� ������ �������

-)6 �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

UHLVHU� �������� � ������ �������

H[W� �������� � ������ �������

H[W� �������� �� ������ �������

;)6 �������� �� ������ �������

-)6 �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

UHLVHU� �������� � ������ �������

H[W� �������� � ������ �������

;)6 �������� � ����� ������

H[W� �������� � ����� ������

-)6 �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

H[W� �������� �� ������ �������

UHLVHU� �������� �� ������ �������

H[W� �������� �� ������ �������

;)6 �������� ���� ����� ������

-)6 �������� ���� EHVW ����� �����

%HVW�0D[LPXP�:ULWH�3HUIRUPDQFH

%HVW�0LQLPXP�:ULWH�3HUIRUPDQFH

%HVW�7RWDO�$YHUDJH�:ULWH�3HUIRUPDQFH

%HVW�7DUJHW�$YHUDJH�:ULWH�3HUIRUPDQFH

%HVW�2UD�WD�:ULWH�3HUIRUPDQFH

%HVW�6SHFIS�WD�:ULWH�3HUIRUPDQFH

%HVW�2YHUDOO�:ULWH�3HUIRUPDQFH

%HVW�0D[LPXP�5H�ZULWH�3HUIRUPDQFH

%HVW�0LQLPXP�5H�ZULWH�3HUIRUPDQFH

%HVW�7RWDO�$YHUDJH�5H�ZULWH�3HUIRUPDQFH

%HVW�7DUJHW�$YHUDJH�5H�ZULWH�3HUIRUPDQFH

%HVW�2UD�WD�5H�ZULWH�3HUIRUPDQFH

%HVW�6SHFIS�WD�5H�ZULWH�3HUIRUPDQFH

%HVW�2YHUDOO�5H�ZULWH�3HUIRUPDQFH

33

Summary of Comparative Read Performance Summary of Comparative Re-Read Performance

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

UHLVHU� �������� ���� ����� ������

H[W� �������� ���� EHVW ����� �����

H[W� �������� ���� EHVW ����� �����

-)6 �������� ���� EHVW ����� �����

;)6 �������� ���� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

H[W� �������� �� ����� �������

UHLVHU� �������� �� ����� ������

-)6 �������� �� ����� ������

;)6 �������� �� ����� ������

H[W� �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

-)6 �������� �� ����� ������

;)6 �������� �� ����� ������

UHLVHU� �������� �� ����� ������

H[W� �������� �� ����� ������

H[W� �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

-)6 �������� �� ����� ������

;)6 �������� �� ����� ������

UHLVHU� �������� �� ����� ������

H[W� �������� �� ����� ������

H[W� �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

-)6 �������� �� ����� ������

UHLVHU� �������� �� ����� ������

;)6 �������� �� ����� ������

H[W� �������� �� ����� ������

H[W� �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

;)6 �������� �� ����� ������

-)6 �������� �� ����� ������

UHLVHU� �������� �� ����� ������

H[W� �������� �� ����� ������

H[W� �������� �� EHVW ����� �����

IV WKURXJKSXW�VFRUH EHVW GHOWD� GHOWD�

UHLVHU� �������� ���� ����� ������

-)6 �������� ���� ����� ������

;)6 �������� ���� ����� ������

H[W� �������� ���� ����� ������

H[W� �������� ���� EHVW ����� �����

%HVW�0D[LPXP�5HDG�3HUIRUPDQFH

%HVW�0LQLPXP�5HDG�3HUIRUPDQFH

%HVW�7RWDO�$YHUDJH�5HDG�3HUIRUPDQFH

%HVW�7DUJHW�$YHUDJH�5HDG�3HUIRUPDQFH

%HVW�2UD�WD�5HDG�3HUIRUPDQFH

%HVW�6SHFIS�5HDG�3HUIRUPDQFH

%HVW�2YHUDOO�5HDG�3HUIRUPDQFH

%HVW�0D[LPXP�5H�5HDG�3HUIRUPDQFH

%HVW�0LQLPXP�5H�5HDG�3HUIRUPDQFH

%HVW�7RWDO�$YHUDJH�5H�5HDG�3HUIRUPDQFH

%HVW�7DUJHW�$YHUDJH�5H�5HDG�3HUIRUPDQFH

%HVW�2UDFOH�5H�5HDG�3HUIRUPDQFH

%HVW�6SHFIS�5H�5HDG�3HUIRUPDQFH

%HVW�2YHUDOO�5H�5HDG�3HUIRUPDQFH

34

Summary of Comparative Random Write
Performance

Summary of Comparative Random Read
Performance

%HVW�0D[LPXP�5DQG:ULWH�3HUIRUPDQFH

%HVW�0LQLPXP�5DQG:ULWH�3HUIRUPDQFH

%HVW�7RWDO�$YHUDJH�5DQG:ULWH�3HUIRUPDQFH

%HVW�7DUJHW�$YHUDJH�5DQG:ULWH�3HUIRUPDQFH

%HVW�2UD�WD�5DQG:ULWH�3HUIRUPDQFH

%HVW�6SHFIS�5DQG:ULWH�3HUIRUPDQFH

%HVW�2YHUDOO�5DQG:ULWH�3HUIRUPDQFH

%HVW�0D[LPXP�5DQG5HDG�3HUIRUPDQFH

%HVW�0LQLPXP�5DQG5HDG�3HUIRUPDQFH

%HVW�7RWDO�$YHUDJH�5DQG5HDG�3HUIRUPDQFH

%HVW�7DUJHW�$YHUDJH�5DQG5HDG�3HUIRUPDQFH

%HVW�2UDFOH�5DQG5HDG�3HUIRUPDQFH

%HVW�6SHFIS�5DQG5HDG�3HUIRUPDQFH

%HVW�2YHUDOO�5DQG5HDG�3HUIRUPDQFH

35

Appendix B
The author of this document encourages readers to send

feedback on this document. Also, anyone wishing to

receive an electronic copy of the results data for scrutiny

and/or further analysis should contact the author at:

troy.stepan@unisys.com

About the Author

John Troy Stepan is an engineer in the Linux Systems Group

of Unisys Corporation and has worked on performance

testing and benchmarking on the Unisys ES7000 server

platform for both Windows and Linux operating systems.

He is a graduate of the Pennsylvania State University and

holds a Bachelor’s degree in MS&IS.

mailto://troy.stepan@unisys.com

For more information, contact your Unisys representative.

Or call:

1-800-874-8647, ext. 111 (U.S. and Canada)

00-1-585-742-6780, ext. 111 (Other countries)

In a hurry to learn more? Visit:

http://www.unisys.com/es7/linux

For even more detail, visit:

http://www.unisys.com/es7/linux/ecommunity

© 2005 Unisys Corporation

All rights reserved.

Unisys is a registered trademark of Unisys Corporation. Intel is a registered trademark of Intel Corporation. Microsoft and

Windows are registered trademarks of Microsoft Corporation. Linux is a registered trademark of Linus Torvalds. SUSE is a

registered trademark of Novell, Inc. Red Hat is a registered trademark of Red Hat, Inc. All other brands and products

referenced herein are acknowledged to be trademarks or registered trademarks of their respective holders.

12/05
41267048-000
4126 7048-000

http://www.unisys.com/es7/linux
http://www.unisys.com/es7/linux/ecommunity

