
Anatomy of a Linux hypervisor
An introduction to KVM and Lguest

Skill Level: Intermediate

M. Tim Jones (mtj@mtjones.com)
Independent Author
Emulex Corp.

31 May 2009

One of the most important modern innovations of Linux® is its transformation into a
hypervisor (or, an operating system for other operating systems). A number of
hypervisor solutions have appeared that use Linux as the core. This article explores
the ideas behind the hypervisor and two particular hypervisors that use Linux as the
platform (KVM and Lguest).

Hypervisors do for operating systems what operating systems roughly do for
processes. They provide isolated virtual hardware platforms for execution that in turn
provide the illusion of full access to the underlying machine. But not all hypervisors
are the same, which is a good thing, because Linux is about flexibility and choice.
This article begins with a quick introduction to virtualization and hypervisors, then
explores a couple of Linux-based hypervisors.

Virtualization and hypervisors

Read more by Tim Jones on developerWorks

• Tim's Anatomy of... articles

• All of Tim's articles on developerWorks

Let's first spend a little time understanding why virtualization is important and the
role that hypervisors play. (And for more information on both topics, see the
Resources section.)

Anatomy of a Linux hypervisor
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 10

mailto:mtj@mtjones.com
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=anatomy&search_flag=true&type_by=Articles&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=tim+jones&search_flag=true&type_by=Articles&show_abstract=false&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/legal/copytrade.shtml


Virtualization, in the context of this article, is the process of hiding the underlying
physical hardware in a way that makes it transparently usable and shareable by
multiple operating systems. This architecture is more popularly known as platform
virtualization. In a typical layered architecture, the layer that provides for the platform
virtualization is called the hypervisor (sometimes called the virtual machine monitor,
or VMM). Each instance of a guest operating system is called a virtual machine
(VM), because to these VMs, the hardware is virtualized to appear as dedicated to
them. A simple illustration of this layered architecture is shown in Figure 1.

Figure 1. Simple layered architecture showing the virtualization of common
hardware

The benefits of platform virtualization are many. But one interesting statistic reported
by the U.S. Environmental Protection Agency (EPA) stood out. The EPA study on
server and data center energy efficiency found that only around 5% of server
capacity was actually used. The rest of the time, the server was dormant. Virtualizing
platforms on a single server can improve server utilization, but the benefits of
reducing server count are a force multiplier. With reduced servers comes reduced
real estate, power consumption, cooling (less energy costs), and management
costs. Less hardware also means improved reliability. All in all, platform virtualization
brings not only technical advantages but cost and energy advantages, as well.

As you see in Figure 1, the hypervisor is the layer of software that provides the
virtualization of the underlying machine (in some cases, with processor support). Not
all virtualization solutions are equal, and you can learn more about the various styles
of virtualization in Resources. Continuing with the processes theme, operating
systems virtualize access to the underlying resources of the machine to processes.
Hypervisors do the same thing, but instead of processes, they accomplish this task
for entire guest operating systems.

Hypervisor classifications

Hypervisors can be classified into two distinct types. The first, type 1 hypervisors,
are those that natively run on the bare-metal hardware. The second, type 2, are
hypervisors that execute in the context of another operating system (that runs on the

developerWorks® ibm.com/developerWorks

Anatomy of a Linux hypervisor
Page 2 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


bare metal). Examples of type 1 hypervisors include Kernel-based Virtual Machine
(KVM—itself an operating system-based hypervisor). Examples of type 2
hypervisors include QEMU and WINE.

Elements of a hypervisor

So a hypervisor (regardless of the type) is just a layered application that abstracts
the machine hardware from its guests. In this way, each guest sees a VM instead of
the real hardware. Let's now look generically at the internals of a hypervisor and also
its presentation to the VMs (guest operating systems).

At a high level, the hypervisor requires a small number of items to boot a guest
operating system: a kernel image to boot, a configuration (such as IP addresses and
quantity of memory to use), a disk, and a network device. The disk and network
device commonly map into the machine's physical disk and network device (as
shown in Figure 2). Finally, a set of guest tools is necessary to launch a guest and
subsequently manage it.

Figure 2. Minimal mapping of resources in a hypothetical hypervisor

A simplified hypervisor architecture then implements the glue that allows a guest
operating system to be run concurrently with the host operating system. This
functionality requires a few specific elements, shown in Figure 3. First, similar to
system calls that bridge user-space applications with kernel functions, a hypercall
layer is commonly available that allows guests to make requests of the host
operating system. Input/output (I/O) can be virtualized in the kernel or assisted by
code in the guest operating system. Interrupts must be handled uniquely by the
hypervisor to deal with real interrupts or to route interrupts for virtual devices to the

ibm.com/developerWorks developerWorks®

Anatomy of a Linux hypervisor
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 10

http://www.ibm.com/legal/copytrade.shtml


guest operating system. The hypervisor must also handle traps or exceptions that
occur within a guest. (After all, a fault in a guest should halt the guest but not the
hypervisor or other guests.) A core element of the hypervisor is a page mapper,
which points the hardware to the pages for the particular operating system (guest or
hypervisor). Finally, a high-level scheduler is necessary to transfer control between
the hypervisor and guest operating systems (and back).

Figure 3. Simplified view of a Linux-based hypervisor

Linux hypervisors

This article explores two Linux-based hypervisor solutions. The first—KVM—was the
first hypervisor module to be integrated into the Linux kernel, implementing full
virtualization, and the second—Lguest—is an experimental hypervisor that provides
paravirtualization in a surprisingly small number of changes.

KVM

KVM is a kernel-resident virtualization infrastructure for Linux on x86 hardware. KVM
was the first hypervisor to become part of the native Linux kernel (2.6.20) and was
developed and is maintained by Avi Kivity through the Qumranet startup, now owned
by Red Hat.

This hypervisor provides x86 virtualization, with ports to the PowerPC® and IA64 in
process. Additionally, KVM has recently added support for symmetrical
multiprocessing (SMP) hosts (and guests) and supports enterprise-level features
such as live migration (to allow guest operating systems to migrate between physical

developerWorks® ibm.com/developerWorks

Anatomy of a Linux hypervisor
Page 4 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


servers).

KVM is implemented as a kernel module, allowing Linux to become a hypervisor
simply by loading a module. KVM provides full virtualization on hardware platforms
that provide hypervisor instruction support (such as the Intel® Virtualization
Technology [Intel VT] or AMD Virtualization [AMD-V] offerings). KVM also supports
paravirtualized guests, including Linux and Windows®.

This technology is implemented as two components. The first is the KVM-loadable
module that, when installed in the Linux kernel, provides management of the
virtualization hardware, exposing its capabilities through the /proc file system (see
Figure 4). The second component provides for PC platform emulation, which is
provided by a modified version of QEMU. QEMU executes as a user-space process,
coordinating with the kernel for guest operating system requests.

Figure 4. High-level view of the KVM hypervisor

When a new operating system is booted on KVM (through a utility called kvm), it
becomes a process of the host operating system and therefore scheduleable like
any other process. But unlike traditional processes in Linux, the guest operating
system is identified by the hypervisor as being in the "guest" mode (independent of
the kernel and user modes).

Each guest operating system is mapped through the /dev/kvm device, having its
own virtual address space that is mapped into the host kernel's physical address
space. As previously mentioned, KVM uses the underlying hardware's virtualization
support to provide full (native) virtualization. I/O requests are mapped through the
host kernel to the QEMU process that executes on the host (hypervisor).

KVM operates in the context of Linux as the host but supports a large number of
guest operating systems, given underlying hardware virtualization support. You can
find a list of the supported guests in Resources.

ibm.com/developerWorks developerWorks®

Anatomy of a Linux hypervisor
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 10

http://www.ibm.com/legal/copytrade.shtml


Lguest (previously lhype)

The Lguest hypervisor, developed by Rusty Russell of IBM in Australia, takes a
decidedly different approach to virtualization. Instead of providing full virtualization
support to run arbitrary operating systems, Lguest provides lightweight
paravirtualization for Lguest-enabled x86 Linux guests (otherwise called
Linux-on-Linux virtualization). This means that guest operating systems know that
they're being virtualized, and this knowledge comes with performance
enhancements. However, Lguest provides reasonable performance without the need
for QEMU providing platform virtualization (as is the case for KVM). The Lguest
approach also simplifies the overall code requirements, requiring only a thin layer in
the guest and also in the host operating system. Let's now explore these changes
and review the high-level architecture of an Lguest environment.

As shown in Figure 5, the guest operating system includes a thin layer of Lguest
code (by definition, paravirtualization). This code provides a number of services. At
the highest level, there's code to determine whether the kernel being booted is being
virtualized. There's also an abstraction layer (implemented through paravirt_ops)
to route privileged operations to the host operating system through hypercalls. For
example, the guest cannot disable interrupts, so these requests are performed in the
host operating system. You'll also find a bus that implements a device abstraction for
guests as well as a set of simple drivers implementing a console, virtual block driver,
and virtual network driver (which permits communication with other guests).

Figure 5. Decomposition of the Lguest approach to x86 paravirtualization

The kernel side of things is implemented as a loadable module called lg.ko. This
module contains the guest operating system's interface to the host kernel. The first
element is the switcher, which implements the method by which guest operating
systems are context-switched for execution. The /proc file system code (for

developerWorks® ibm.com/developerWorks

Anatomy of a Linux hypervisor
Page 6 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


/dev/lguest) is also implemented in this module, which implements the
user-space interfaces to the kernel and drivers, including hypercalls. There's code to
provide the memory mapping through the use of shadow page-tables and
management of x86 segments.

Finally, the Documentation subdirectory in the kernel contains the launcher utility
(lguest) to launch a new guest operating system instance. This file does double
duty as utility and documentation.

Lguest has been in the mainline kernel since 2.6.23 (October 2007) and was
developed and is maintained by Rusty Russell. It consists of approximately 5000
source lines of code, including user-space utilities. Although (reportedly) simple,
Lguest provides for true paravirtualization. Along with this simplicity come
constraints, however. For example, Lguest virtualizes only other Lguest-enabled
guest operating systems and currently only for the x86 architecture. But even with
those constraints, Lguest provides an interesting approach to virtualization that is
accessible by anyone willing to study Rusty's code.

Linux hypervisor benefits

Developing hypervisors using Linux as the core has real, tangible benefits. Most
obviously, basing a hypervisor on Linux benefits from the steady progression of
Linux and the large amount of work that goes into it. From the typical optimizations
and bug fixes, scheduling, and memory-management innovations to support for
different processor architectures, Linux is a platform that continues to advance (to
quote John of Salisbury "standing on the shoulders of giants").

KVM proved not long ago that through the addition of a kernel module, one could
transform the Linux kernel into a hypervisor. The Lguest hypervisor took this a step
further, and with the constraints of paravirtualization, minimized the solution even
further.

Another intriguing benefit of using Linux as the platform is that you can take
advantage of that platform as an operating system in addition to a hypervisor.
Therefore, in addition to running multiple guest operating systems on a Linux
hypervisor, you can run your other traditional applications at that level. So instead of
worrying about a new platform with new application programming interfaces (APIs),
you have your standard Linux platform for application development (in the event a
monitoring application or hypervisor management application is needed). The
standard protocols (TCP/IP) and other useful applications (Web servers) are
available alongside the guests. Recall Figure 4 in the KVM discussion: In addition to
the guest operating systems, there's the KVM-modified QEMU. This is a standard
process and illustrates the power behind Linux as a hypervisor. KVM makes use of
QEMU for platform virtualization, and with Linux as the hypervisor, it immediately
supported the idea of guest operating systems executing in concert with other Linux

ibm.com/developerWorks developerWorks®

Anatomy of a Linux hypervisor
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 10

http://www.ibm.com/legal/copytrade.shtml


applications.

Conclusion

One thing is clear with the hypervisor developments that are occurring: The
hypervisor is a new battleground. Thirty years ago, the operating system was the
focus of control and dominated a small number of players. Today, this battleground
has shifted to the hypervisor, and Linux has a clear role to play.

But Linux as a hypervisor is not without its critics, and much of the criticism comes
from arguments of bloat. These same arguments were used not too many years ago
in the embedded domain. Today, Linux as an embedded operating system is a
powerhouse and hasn't stopped yet. But that's not to say that there's nothing to this
criticism. Perhaps some architectural changes are in order to make a great,
ubiquitous operating system even more flexible.

developerWorks® ibm.com/developerWorks

Anatomy of a Linux hypervisor
Page 8 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• The EPA Report on Server and Data Center Energy Efficiency includes a great
survey on where energy is consumed in the data center. From this report, it's
clear that virtualization plays a large role in improving the energy efficiency of
data centers through server consolidation.

• The Kernel-based Virtualization Machine is one option for a Linux-based
hypervisor. You can learn more about KVM at the project's Web site. Here,
you'll also find an interesting white paper that describes the ideas behind the
technology. KVM continues to evolve, and you can learn about what's
happening and what's ahead in the last KVM Forum 2008. You can also find a
list of the supported guests at the KVM guest support status page.

• Virtualization comes in many flavors. This article explored two such solutions
encompassing full virtualization and paravirtualization. You can learn about
some of the other options in "Virtual Linux" (developerWorks, December 2006).
You can also dig into more details of KVM and QEMU in "Discover the Linux
Kernel Virtual Machine" (developerWorks, April 2007) and "System emulation
with QEMU" (developerWorks, September 2007).

• This article touched on some other interesting Linux topics, such as loadable
kernel modules and the /proc file system. For more details on these two
subjects, check out "Anatomy of Linux loadable kernel modules"
(developerWorks, July 2008) and "Access the Linux kernel using the /proc
filesystem" (developerWorks, March 2006).

• The Lguest (Simple x68 Hypervisor) shows how to build a simple x86
hypervisor with Linux with a minimum of changes. The Lguest Web site
provides the latest details and documentation to learn more.

• Although this article explores the high-level theory behind Linux-based
hypervisors, you can explore the installation and use of Lguest at Enterprise
Linux Tips.

• In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

• See all Linux tutorials and Linux tips on developerWorks.

• Stay current with developerWorks technical events and webcasts.

Get products and technologies

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

ibm.com/developerWorks developerWorks®

Anatomy of a Linux hypervisor
© Copyright IBM Corporation 2009. All rights reserved. Page 9 of 10

http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/KvmForum2008
http://www.linux-kvm.org/page/Guest_Support_Status
http://www.ibm.com/developerworks/linux/library/l-linuxvirt/
http://www.ibm.com/developerworks/linux/library/l-linux-kvm/
http://www.ibm.com/developerworks/linux/library/l-linux-kvm/
http://www.ibm.com/developerworks/linux/library/l-qemu/
http://www.ibm.com/developerworks/linux/library/l-qemu/
http://www.ibm.com/developerworks/linux/library/l-lkm/
http://www.ibm.com/developerworks/linux/library/l-proc.html
http://www.ibm.com/developerworks/linux/library/l-proc.html
http://lguest.ozlabs.org/
http://searchenterpriselinux.techtarget.com/tip/0,289483,sid39_gci1274113,00.html#
http://searchenterpriselinux.techtarget.com/tip/0,289483,sid39_gci1274113,00.html#
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/legal/copytrade.shtml


• Get involved in the My developerWorks community; with your personal profile
and custom home page, you can tailor developerWorks to your interests and
interact with other developerWorks users.

About the author

M. Tim Jones
M. Tim Jones is an embedded firmware architect and the author of Artificial
Intelligence: A Systems Approach, GNU/Linux Application Programming (now in its
second edition), AI Application Programming (in its second edition), and BSD
Sockets Programming from a Multilanguage Perspective. His engineering
background ranges from the development of kernels for geosynchronous spacecraft
to embedded systems architecture and networking protocols development. Tim is a
Senior Architect for Emulex Corp. in Longmont, Colorado.

developerWorks® ibm.com/developerWorks

Anatomy of a Linux hypervisor
Page 10 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Virtualization and hypervisors
	Elements of a hypervisor
	Linux hypervisors
	Linux hypervisor benefits
	Conclusion
	Resources
	About the author

