

ANALYSIS AND COMPARISON OF LINUX FILE SYSTEMS IN MULTIMEDIA

ENVIRONMENTS

By

Peter Jahn

Jahn@LinuxCampus.net

A DISSERTATION

Submitted to

The University of Liverpool

in partial fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

28/12/2010

ABSTRACT

ANALYSIS AND COMPARISON OF LINUX FILE SYSTEMS IN

MULTIMEDIA ENVIRONMENTS

By

Peter Jahn

In recent years the usage of multimedia storage systems has dramatically increased and more

and more vendors are selling Linux-based multimedia devices, such as satellite receiv-

ers/recorders, multimedia centers, music boxes, and other multimedia equipment. Since a cur-

rent Linux kernel includes over 30 different file systems (including file systems for clusters and

networks), the question is raised, what impact does a Linux file system and its characteristics

have on the performance of a multimedia system?

Even though we can manipulate multimedia files like any other files, not every file system can

cope with the different and complex requirements of all types of multimedia files. Each Linux

distribution has its own preferred file system, but even if we could store all of our multimedia

files on it, this would only be a stopgap. It is sometimes very hard to understand that every file

system has its pros and cons, and that no single file system can fit every situation. All of the

many file systems available were created based on experience with other file systems, and

very often they were created to be the best for a special environment or situation. Storing and

manipulating multimedia files is a very complex task, because multimedia libraries can contain

anything from very small to quite large files. Also the amounts of files per partition can vary

extremely.

This work provides an analysis to identify and evaluate existing Linux file systems and their

behavior as multimedia file systems. Analyzing the requirements of multimedia files, such as

different file sizes, typical file amount, and so on, was one part of this project. Also an up-to-

date comparison of several Linux file systems available for multimedia files has been made.

Based on the outcome of this analysis, five different multimedia libraries were created and used

for a series of experiments and performance tests in the lab. These experiments show how the

default settings of file systems perform and which improvements can or should be made in

multimedia environments.

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language of

others is set forth, quotation marks so indicate, and that appropriate credit is given where I

have used the language, ideas, expressions, or writings of another.

I declare that the dissertation describes original work that has not previously been presented

for the award of any other degree of any institution.

Signed,

Peter Jahn

ACKNOWLEDGEMENTS

I would like to thank Taly Sharon, the dissertation advisor for her support, patience and

constructive comments. I am also grateful to Martha McCormick, the general dissertation advi-

sor for helping me to find a great dissertation advisor for my project. I would also like to thank

my family for their understanding and great help during the last three years. And last but not

least I would like to thank Joyce for being the most important friend during this study.

 vi

TABLE OF CONTENTS

 Page

LIST OF TABLES viii

LIST OF FIGURES ix

Chapter 1. Introduction 1

1.1 Scope 1

1.2 Problem Statement 2

1.3 Approach 4

1.4 Outcome 5

Chapter 2. Background and review of literature 6

2.1 Related Work and Literature 6

2.2 Multimedia Terms and Definitions 9

2.3 Multimedia Characteristics and Requirements 10
2.3.1 File Size ... 11
2.3.2 File Amount ... 12
2.3.3 Media Delivery and Data Rate ... 13
2.3.4 Streaming ... 14

2.4 Multimedia Storage System 15

2.5 File Systems Overview 16

2.6 Summary 21

Chapter 3. Methods and Realization 23

3.1 Multimedia Libraries 23

3.2 Testing Rules and Environment 24
3.2.1 General Testing Rules .. 25

Chapter 4. Evaluation and Results 27

4.1 Outcome Test Scenario I: Default Settings 27
4.1.1 Format Time .. 27
4.1.2 Copy Time ... 29
4.1.3 Statistics for Nearly Full Library ... 30
4.1.4 File System Check ... 33
4.1.5 Delete Time.. 34
4.1.6 File Creation Time ... 37

4.2 Outcome Test Scenario II: Optimized Settings 38
4.2.1 Mount Options ... 39
4.2.2 Ext4 .. 39
4.2.3 Xfs.. 41
4.2.4 ReiserFS ... 45

 vii

4.2.5 JFS ... 47

Chapter 5. Conclusions 49

5.1 Lessons Learned 49

5.2 Research Question Revisited 51

5.3 Future Activity 53

5.4 Prospects for Further Work 53

REFRENCES CITED 54

APPENDICES 57

Appendix A. Raw data of Experiments with Default Settings 57

Appendix B. Raw Data of Experiments with Tuned Settings 63

Appendix C. Hard Disk Performance 66

Appendix D. Multimedia Storage Space Requirements 67

 viii

LIST OF TABLES

 Page

Table 1: Data Rate of Multimedia Sources, Tanenbaum (2008 p.471)15
Table 2: Block Size Limitations, SuSE (2005) ..20
Table 3: Multimedia Library Content ..23

Table 4: Multimedia Library Details ...24
Table 5: Needed Inodes ...28
Table 6: Overview of Experiments with Default Settings ...50

Table 7: File System Recommendation for Specific Library52
Table 7: Free size on the Partition after Formatting ..57
Table 8: Partition Format Time..57
Table 9: Used Size on Picture Library after Copy Job ..57

Table 10: Used Size on Sound Library after Copy Job ...58
Table 11: Used Size on Video Library after Copy Job ..58
Table 12: Used Size on Video-hd Library after Copy Job ...58
Table 13: Free Size on Picture Library after Copy Job ...58

Table 14: Free Size on Sound Library after Copy Job...59
Table 15: Free Size on Video Library after Copy Job ...59
Table 16: Free Size on Video-hd Library after Copy Job ..59

Table 17: Copy Time for Picture Library ..59

Table 18: Copy Time for Sound Library ...60
Table 19: Copy Time for Video Library ..60
Table 20: Copy Time for Video-HD Library ...60

Table 21: File System Check Time for Partition with Picture Library60
Table 22: File System Check Time for Partition with Sound Library61

Table 23: File System Check Time for Partition with Video Library61
Table 24: File System Check Time for Partition with Video-HD Library61
Table 25: Delete Time for Picture Library Content ...61

Table 26: Delete Time for Sound Library Content ..62
Table 27: Delete Time for Video Library Content ..62

Table 28: Delete Time for Video-HD Library Content ...62

Table 29: Time for Creating File with Specific File Size ..63
Table 30: Time for Filling a Library with Files of a Specific Size63
Table 31: ext4 Format Time with Tuned Settings ...63
Table 32: Video-hd Library Tasks on Tuned XFS Partition ..64
Table 33: Picture Library Tasks on Tuned XFS Partition ...64
Table 34: Sound Library Tasks on Tuned JFS Partition ..64

Table 35: Picture Library Tasks on Tuned ext4 Partition ..65
Table 36: Video-hd Library Tasks on Tuned ext4 Partition ..65
Table 37: Sound Library Tasks on Tuned ReiserFS Partition65

 ix

LIST OF FIGURES

 Page

Figure 1: Partition Format Time ..27
Figure 2: Library Copy Time ...29
Figure 3: Size Used ..30
Figure 4: Size Free ...31

Figure 5: Free Size after Format ..32

Figure 6: File system Check Time ...33
Figure 7: fsck Time vs. Inode Count, Mathur A. et al. (2007)34

Figure 8: Library Content Delete Time ...35
Figure 9: File Creation Time Test 1 ...37
Figure 10: File Creation Time Test 2 ...38
Figure 11: Format Time ext4 ...40
Figure 12: Tuned Library Copy Time ..41

Figure 13: Bonnie++ Output with Default Settings ...42

Figure 14: Bonnie++ Output with Tuned Settings ...42
Figure 15: Xfs Picture Library Copy Time ..43
Figure 16: Xfs Video Library Copy Time ...44

Figure 17: Xfs Picture Library Delete Time ..45

Figure 18: ReiserFS Sound Library Copy Time ..46
Figure 19: ReiserFS Sound Library Delete Time ..46
Figure 20: JFS Sound Library Copy Time ...47

Figure 21: JFS Sound Library Copy Time ...47
Figure 22: Hard Disk Performance, Figure Source: Helba (2009)66

Figure 23: Relative Performance Improvements, Helba (2009)66
Figure 24: Data Rate for Uncompressed Multimedia Data, Gemmell et al. (1996)67
Figure 25: Scan Resolution, Fulton (2010) ..67

Figure 26: Digital Camera Resolution Chart, B&H (2010) ...68

 1

Chapter 1. INTRODUCTION

Multimedia files are among the most commonly used files on computers today. Therefore

storing and reading multimedia files from a hard disk are common tasks for every PC

owner. Whether pictures, music, or movies, all of these are stored like other ordinary data

in the file system. Since the common lifestyle of people today has changed to make use

of more and more digital media devices, the need for digital storage space has also dra-

matically increased. Especially in multimedia environments one is are faced with a lot of

new demanding requirements, such as a broad range of different file sizes, different

amounts of files, real-time applications, and so on. No matter which kind of multimedia file

one would like to handle, a common way to store such files is on general-purpose file

systems. The problem is that although simply using the operating system's default file

system could lead to a storage system where all multimedia files can be stored, such

storage would only be a stopgap and a waste of resources.

1.1 Scope

The scope of this research project is to investigate the impact of multimedia files on a

Linux file system and to make a deep comparative analysis of 5 popular journaling file

systems currently available for multimedia files. The main research questions this disser-

tation is focused on are:

• What impact does a Linux file system and its characteristics have on the perfor-

mance of a multimedia system?

• Which Linux file system fits better for which kind of multimedia files?

To be able to analyze and answer this question, first two objectives have to be defined:

• What is a multimedia system, what are its characteristics, and what is required of

it?

• Where are the differences among file systems and what are their characteristics?

 2

The research methods used to obtain the information were a combination of case studies

and experiments. The analysis of the characteristics of multimedia files is based on a

short theoretical research summary of pictures, music, movies and their properties. Sev-

eral practical experiments with real libraries containing different multimedia content were

performed to examine their behavior. The next objective was a deep theoretical analysis

of case studies and documentation about Linux file systems and their possible impact on

multimedia environments. Additionally an exploratory study of Linux file system features

and tuning parameters was needed, because it was not clear which of these could have

positive or negative impacts on multimedia files. The last part of this research was again

based on experiments to test if some of the tuning parameters found in the previous part

could be used to improve the performance of multimedia files on Linux file systems.

1.2 Problem Statement

Today there are several operating systems available and each of them offers several

different file systems. Especially in multimedia environments the use of Linux operation

system is growing very fast because it is open source and therefore cost-free to use. An-

other reason for Linux as the preferred multimedia platform is the broad offering of differ-

ent file systems and the availability of the source code.

When one talks about multimedia content and its problems, one often hears that read

performance is important to guarantee that the needed data is there within a useful time

frame. However, even though this is true, there is much more to consider. The complete

file handling, such as creating, deleting, moving, and reading files, is also important, and

these are tasks where each file system not only has it pros and cons, but also each has

its limits. Additionally each file system offers several parameters to manipulate the stand-

ard behavior, which again have a huge impact on the performance and the limits of the

file system. The question is, how one can say that file system X fits best for multimedia

files when praxis shows that there is a file size range from 20 KB files for small pictures, 4

MB files for MP3 files and large files, up to 50 GB for movies in HD quality. The amount of

files per partition also varies extremely, because on a 600 GB partition one can store ~52

50GB files but ~600.000 1MB files. Managing such different file sizes and amounts of files

 3

produces different requirements on the file system and therefore it is not believable that

one file system can fit perfectly for all kinds of multimedia files.

Even though there are several Linux file systems available it is common practice to use

the default file system of the Linux distribution. Not only is it more convenient to set up the

system this way, but also very often Linux distributors try to convince customers that the

default file system is the best choice for most environments. Going a step further, most of

the Linux distributors do not use the unmodified kernel source to build their kernel (also

called vanilla or mainline kernel). Instead they make a lot of modifications to the original

source code to activate or implement missing kernel features. These modifications are

created mainly by implementing kernel code patches before the kernel gets compiled

(Love 2005). These patches lead to the problem that benchmarks of one file system can-

not be accurately compared with the same file system on a different distribution. Even if

the major and minor number of the kernel version were exactly the same, it would not

mean that exactly the same file system source code was used to compile this kernel.

Another example is the I/O scheduler which has an important impact on the balance be-

tween performance and stability. Eckermann and Tobey (2010) mention in their article

about server performance that the default I/O scheduler in the main stream kernel is the

anticipatory scheduler, but they also explain that SUSE systems such as SUSE Linux

Enterprise Server 11 use the completely different fair queuing scheduler. Using a different

scheduler entirely changes the way data is ordered and written to the I/O device, and

according to Moallem (2008) each I/O scheduler is optimized for a different kind of work-

load. So only changing the I/O scheduler on a multimedia system will change the perfor-

mance seen on read and write requests.

These are reasons why all tests in this project were created on an Open SUSE 11.3 Linux

system with the latest stable vanilla Linux kernel version 2.6.36 installed, which can be

downloaded from http://www.kernel.org. This change to the mainline Kernel has the ben-

efit of increasing the reproducibility of all tests but also has the drawback that a file sys-

 4

tem such as Reiser4 could not be tested, because it is not mainstream and can only be

implemented via kernel patches.

1.3 Approach

The main research methods used to obtain the needed information for this project were

based on experiments. On a Linux System, there are many different file systems availa-

ble, and it would be beyond the scope of this project to cover all available file systems.

Therefore this research project is restricted to five of the newest and most common local

Linux journaling file systems. The selection criteria used to decide which Linux file sys-

tems should be analyzed were: the file system must be a journaling file system, it should

be the latest available version, it should be marked as "stable", it must be freely available

in the Linux kernel without license restrictions or extra need of kernel patching, and it

should be commonly used and accepted in the Linux community.

Based on these criteria, the project analyzes the following file system types: ext4, JFS,

XFS, Reiser3 and Btrfs. Btrfs and Reiser3 are included in this research project for special

reasons. Btrfs is marked as experimental in the Linux kernel 2.6.36 with the note that the

disk format is unstable and not yet finalized. But according to a statement of the MeeGo

developer Arjan van de Ven, the Btrfs file system is "the future of Linux file systems" and

much more stable than most people believe, and therefore MeeGo, the new mobile Linux

operation system, uses Btrfs as its default file-system (Ven 2010). Also Linux distribution

developer manager J.R. Scott is thinking out loud about replacing the default file system

ext4 with Btrfs in the next Ubuntu version (Scott 2010).

Reiser3, on the other hand, is not the latest Reiser version, because its successor, Rei-

ser4, has been available since 2004. It is not that the successor was not a good file sys-

tem, but for several reasons Reiser4 is still not yet available in the mainline Linux kernel,

and therefore it will be mostly ignored in this project.

To gain a feeling of real and practical requirements of multimedia files, four libraries have

been created with real multimedia content as a part of this project. Each library is approx-

imately 600 GB and has been filled with one kind of multimedia or multimedia element

 5

content. Depending on the kind of multimedia content stored, such as pictures, sound,

small videos or large videos, the average file size varies extremely and therefore also the

amount of files per library. In addition to dummy sample files created via Linux commands

such as "dd" or "tar", four libraries were used as source files for a series of experiments

and performance tests in the lab. The outcome of these experiments were used as an

additional source for the exploratory study of Linux file system features and their positive

and negative impacts on multimedia files. After this part, a list of parameters and file sys-

tem features, such as block size, journaling settings, mount options, and structure op-

tions, which could lead to better test results, was available. The outcome of all tests and

the exploratory study was used to repeat several experiments with optimized settings. A

conclusive comparison at the end of the project shows the performance effects of using

standard file system parameters compared to those when using tuned settings in multi-

media environments.

1.4 Outcome

More and more multimedia devices, such as music boxes, satellite recorders and multi-

media centers, are based on a Linux operating system. The outcome of this dissertation

project is an up-to-date comparison of available Linux file systems which can be used for

multimedia files. In detail this document contains the following information:

• Introduction to multimedia files and file systems

• Impact and requirements of multimedia files on file systems

• Structure and types of Linux file systems

• Analysis of available up-to-date Linux file systems

• Linux file system features and tuning parameters

• Practical tests of several Linux file systems and their features in multimedia envi-

ronments

• Results and summary of research

• Results and summary of practical tests

• Recommendations

 6

Chapter 2. BACKGROUND AND REVIEW OF LITERATURE

One of the fundamental requirements of multimedia files is that they be stored and read

from a storage medium. Even though a normal user does not really think about the file

system requirements needed for manipulating multimedia files, the industry started a long

time ago to prepare for the future of multimedia storage technologies. This chapter shows

that it has been predicted for several years that the requirements of multimedia applica-

tions will create extreme demands on file systems, and it also shows where general-

purpose file systems can and cannot satisfactorily fulfil the requirements.

2.1 Related Work and Literature

A paper published by Gartner entitled "File System Innovations Growing in Importance"

describes in detail that older versions of file systems cannot cope with the scalability

which is needed for the characteristic workload of the future. Gartner's recommendation is

that vendors of storage and servers should invest more in the development of file

systems and techniques to prepare them for the expected growth in the near future

(Gartner 2007).

The requirements on future storage systems which will be used for multimedia applica-

tions was described in detail in the survey by Halvorsen et al. (2003). This team came to

the conclusion that future applications will be a mixture of time-dependent and time-

independent data types, and that storage systems available today do not fulfill all the

requirements to support continuous multimedia applications and systems (Halvorsen et

al. 2003).

To design a multimedia storage server which performs well, one must consider several

fundamental issues. In their tutorial about multimedia storage servers, Gemmell et al.

(1996) present a deep overview of the architectures and algorithms needed for imple-

menting digital multimedia storage servers.

 7

The dissertation by Niranjan with the title "File System Support for Multimedia Applica-

tions" deals with the design, implementation, and a performance evaluation of a special

multimedia file system called MMFS (Niranjan 1996). The author performed several ex-

periments to show the benefits of using a special file system for multimedia files com-

pared to using a general-purpose file system.

Park et al. (2000) also presented a paper that shows the benefits of a special multimedia

file system called PMFS. In their research they designed and tested this parallel multime-

dia file system in comparison with the parallel virtual file system (PVFS) and came to the

result that PMFS provides better performance in the processing of real time data.

In a paper entitled "Quality of Service Routing for Supporting Multimedia Applications"

written by Wang and Crowcroft and published on the IEEE journal Selected Areas in

Communication, the importance of quality of service for multimedia applications was ex-

amined.

The authors are convinced that in the last few years there have been a lot of technical

improvements in multimedia environment, but that the requirements for the element quali-

ty of service routing for multimedia traffic are still missing (Wang & Crowcroft 1996).

Often multimedia content is streamed over the wire. In connection with a real-time appli-

cation the control of the available bandwidth is an important factor. Busse et al. (1995)

have performed several experiments on the LAN and over the Internet to test and tune

mechanisms to dynamically control the bandwidth of multimedia applications such as a

video conferencing system.

To know which file system is better for which kind of multimedia files, it is necessary to

find out what the requirements of multimedia files are. Charts by Fulton Wayne (2010)

and B&H (2010) provide some useful data about how large image files compare in image

size and resolution. More general Information about all kinds of multimedia files can be

found in the book Digital Multimedia by Chapman and Chapman (2009) and in the book

Modern Operating Systems by Tanenbaum (2008).

 8

The impact of multimedia files on operating systems is also explained very well in the

Operating System Concepts book by Galvin (2005). The project also requires a lot of

information about the growth of storage media and file systems. A very good history of the

growth of hard disks is provided in the article by Klein (2008). The importance of growth in

file systems and storage area networks is explained in Liao (2003) and Gartner (2007).

The size limits in Linux file systems are compared in SuSE (2005).

The file system chosen for storing multimedia files has a huge impact on the end result.

Performance tests by SUN (2004) and Stephan (2005) demonstrate that no Linux file

system can behave and perform equally for all kinds of files. Even if one knows exactly

which file system should be used for a special multimedia environment, there is still the

problem that each file system has its own features and tuning parameters.

File system performance can decrease over time, and one reason for this is fragmenta-

tion. The master thesis by Loizides (2001) analyzes the impact of fragmentation on Rei-

serFS, and articles such as "ext4 online defragmentation" by Sato (2007) describe the

negative impact of fragmentation. The chosen method of disk space allocation within the

file system can also have a huge suboptimal impact. In his dissertation Kang (2007) de-

scribes allocation and space management strategies and their impact on the system. A

different view of the allocation strategy problems can be seen in the dissertation by Leung

(2009) where the main focus was on indexing and searching in large-scale file systems.

Several books and documents such as Carrier (2005), Leung (2009), and Loizides

(2001) give a deep explanation of file system internals and help one to better understand

the internal structure of Linux file systems. To understand a particular file system with all

its functions, it is necessary to analyze its special capabilities. Articles such as "JFS Log"

by Best (2000), "ext4 Features" by Mathur et al. (2007), "File System Architecture and

Terms" by French (2008), and many more provide them.

Improving and analyzing the performance of a Linux system is a difficult task. Each file

system operation depends on many factors and is influenced by many parameters. Books

such as Performance Tuning for Linux Servers by Johnson et al. (2005) deliver a lot of

 9

background information on the subject. The dissertation about the effect of Linux I/O

schedulers on performance by Moallem (2008) and the tuning document by Eckermann

and Tobey (2010) also prove that little changes on some parameters can have a huge

impact on the overall performance.

2.2 Multimedia Terms and Definitions

Multimedia is a commonly used term today and therefore it is surprising that every book

defines it slightly differently. For this reason this chapter will first clarify several terms

used in this paper.

The term multimedia is a combination of the terms multi and media. The term multi means

that something consists of various elements, and the term media refers to the software

and hardware used for presenting or delivering these elements. According to Chapman

and Chapman (2009, p.7) the various elements of multimedia are "text, still images,

sound, video and animation". So, broadly spoken, multimedia is the presentation of some-

thing which is based on the combination of at least two of the five basic elements: text,

still images, sound, video and animation. A simple example of multimedia is a web page

which includes just text and still images. An example of more complex multimedia is a

movie which includes sound, video, and sometimes text and animations. It is not neces-

sary for this document to distinguish between the general term multimedia and the term

multimedia elements. Therefore in this paper the term multimedia is used for both of the-

se concepts.

The software used to present multimedia is usually called a multimedia application. The

multimedia application for viewing a web page would be the browser, for listening to mu-

sic a music player, and for watching videos a video player.

All types of multimedia content must be stored somewhere. Today, there is a rich variety

of different storage areas available, such as the local hard disk of a computer, an exter-

nally connected storage device such as a USB stick, an optical medium such as a CD or

a DVD, or a storage server connected over the wire. In this document a multimedia stor-

 10

age system is a medium where data can be saved and read again afterwards, even if

there were a power interruption. Some documents about multimedia, such as Halvorsen

et al. (2003), use the term multimedia storage system slightly differently, because they

include not only the storage device but also the software system which handles all the

necessary tasks, such as I/O scheduling, data placement and so on. In this document

such a combination is called a multimedia storage server.

Multimedia content is normally stored on a storage system just like other data, such as

spreadsheets and word documents. Generally multimedia formats are very complex in

comparison with other formats, because they contain a variety of different elements (Mur-

ray & Vanryper 1996, ch10_02). Over time, a lot of different formats have been introduced

to improve the quality of the transmission time or to increase space savings. It is beyond

the scope of this study to cover all of these formats in detail, since there are over 30 dif-

ferent multimedia formats listed on pages such as http://multimedia.cx/formats.html, for

example, and each of these has different uses and characteristics.

2.3 Multimedia Characteristics and Requirements

Storing and manipulating multimedia objects on the hard disk is a very complex process

and demands a lot from a file system. The main problem is that manipulating multimedia

content on a storage device produces different requirements than the requirement for

regular files.

Even though multimedia files are often stored like any other file on the same file systems

regular files are stored, this is a problem, because especially older file systems were pri-

marily invented for regular files and not for multimedia files. This is the reason why special

file systems for multimedia files such as MMFS and PMFS were invented.

Even though experiments such as those by Niranjan (1996) and Park et al. (2000) have

proved that special file systems such as MMFS and PMFS perform much better in multi-

media environments, the situation remains that the common way for users to store multi-

media files is on regular file systems which are included with their operating system. Of

 11

course large and professional multimedia storage servers used for streaming video such

as YouTube behave differently, but normal users do not have this equipment.

What are the complex requirements of multimedia files on general-purpose file systems?

2.3.1 File Size

The first problem is the varying file size of the different multimedia formats. Because of

the wide variety of media combinations, the files can be from very small to quite large.

Digitized sound is stored in raw or compressed format as an audio file on the storage

medium (Chapman & Chapman 2009). Depending on factors such as the length, sam-

pling rate, and compression rate an audio file can be from a few kilobytes to several meg-

abytes. An audio format which is perhaps used the most is MP3, and therefore it is not

surprising that nearly every media player supports it.

Multimedia applications, such as iTunes by Apple, offer the functionality to convert a mu-

sic CD to different formats such as AAC or MP3. Depending on the quality needed for

MP3 files, a data rate of 16 kbit/s up to 320 kbit/s can be chosen, whereby the default

setting in iTunes 10.1 is 160 kbit/s. The sound library created for this project was 600 MB

and included 100,621 MP3 and AAC files from several iTunes libraries. Each file has a

different size, but the average size of a file was 6.1 MB. The size of a picture depends on

resolution factors, color depth, and compression, and, here again, one could have files

from a few kilobytes to several megabytes. Even cheapest entry-level cameras are at

least 5 mega-pixel digital cameras which produce pictures with a resolution of 2560 x

1920 (B&H 2010). Multiplied by 24 bits of color per pixel, such a resolution produces files

with about 14 MB in raw format. Compressed using an algorithm such as JPEG, the files

can be reduced to a file size of from 0.5 to 7 MB each, depending on the quality needed.

The picture library created for this project was 600 MB and included 1,345,102 files,

where the average file size of library was 0.46 MB.

Videos are mostly a combination of audio and moving images, and therefore it should be

clear that their file sizes are much larger than the size of a single picture or of audio files.

 12

Also the variety of different video files is broad, because one could have anything from a

very simple video without audio up to a high quality video with a large resolution and per-

fect sound. As can be seen, the size depends on many factors, but, for example, a 100-

minute long encoded MPEG-1 video file requires approximately 1.125 GB, whereas the

same video for high-definition television (HDTV) requires approximately 15 GB of space

on the hard disk (Galvin 2005, p.717). Worse, an uncompressed HDTV movie with a

length of 2 hours fills a single 570 GB file (Tanenbaum 2008 p.470).

For this project two 600 GB video libraries were created, one with 11,617 video files with

an average size of 52 MB and one with videos in HD quality, which contains 35 files with

an average size of 17.5 GB per file.

2.3.2 File Amount

In the past it was common for a user to store text files, spreadsheets, and some pictures

on a computer, which could lead to several hundred files. Nowadays it is increasingly

common to store downloaded music, pictures, books, and movies electronically on the

computer. Users have also started to transfer all their music CDs, pictures, and movies to

their computer to save them electronically or share them on the Internet. This transfer

saves space in their real book shelves and music storage cabinets, but it leads to several

thousands of multimedia files and gigabytes up to terabytes of needed storage space.

Users no longer visually see the space needed in their storage systems, which also leads

to the problem that everything is stored, even if it is useless. An example of this are pic-

tures taken on a holiday trip. In the past it was common to use 24 or 36 picture cartridges

in a camera. After the pictures were taken, these cartridges had to be taken afterwards to

a shop for development. Due to the fact that the development was charged per picture,

the worst pictures were usually rejected to reduce costs.

Today it is more common to use a digital camera, where the cost factor has changed

completely. Instead of buying several cartridges, a user buys a memory disk where he or

she can save several hundred pictures. Instead of bringing the complete memory disk to

 13

a shop for development, the consumer usually stores all the pictures on a computer at

home without making selections. Afterwards users look at their photos on their computer

or upload some of them to websites. This change in behavior leads also to the problem

that on a one-week trip users take several hundred pictures with their digital cameras,

because it costs no more than taking 24 pictures. Also the selection process is not so

important anymore, because the user has the feeling that storing a few more pictures

does not hurt, because there are no immediate costs. But storing two hundred pictures

with an estimated size of 2 MB leads to 400MB of needed storage space, and after a few

trips or years, several terabytes are needed to store the picture collection.

Handling such an amount of files is not really a problem for current file systems, but it

produces some negative consequences, such as longer file system checks, slower

search results, longer file handling times, more space needed for metadata, backup prob-

lems, and much more. Of course with a tuned data placement policy (block size, block

allocation strategies, defragmentation techniques, striping, and so on) the efficiency of the

storage system can be improved (Park et al. 2000), but first one needs to know which

settings would be helpful.

2.3.3 Media Delivery and Data Rate

The next challenge is that multimedia applications require more and more services from

the operation system that are normally seen only in real-time environments. Chapman

and Chapman (2009) mention that multimedia applications can be divided into time-based

and static media. Static media, such as text files or pictures, are not time sensitive, which

means it doesn't matter if the file opens in one or two seconds. Also, when the file is

loaded into memory there are no continuous changes anymore, and therefore the file

produces no heavy load on the system. In contrast is time-based multimedia content,

such as videos and sound. It may not matter whether a file is opened in one or in two

seconds, but when it has started within the multimedia application, it is not desirable for

breaks to happen because the content cannot be delivered fast enough from the storage

systems. So time-based media requires not only continuous transmission, they also re-

 14

quire transmission at a fixed time rate. As a result of these requirements, multimedia ap-

plications are also called soft real-time applications (Halvorsen et al. 2003).

As an example, consider a single video stream which is displayed at a resolution of 800 x

600 and a color depth of 24 bits. It would take 800 x 600 x 24 = 11,520,000 bits of data

for each frame and, at 30 frames per second, 345 Mbps to present it (Galvin 2005,

p.717). During playback, the system must read the data from the hard disk at a speed

which is fast enough to avoid breaks or delays which would be disturbing in the presenta-

tion. On the other hand, while a video is being recorded, the system must continuously

store the recorded data on disk, and a buffer overrun would lead to loss of data. So en-

suring continuous recording and retrieval of multimedia content at very high data rates are

important requirements for every multimedia system.

Based on the video example above, one could easily come to the conclusion that it would

be better to tune a system for writing speed to avoid problems in recording, but in reality

the answer is not that easy. It depends extremely on the environment, but according to

Halvorsen et al. (2003) most of the time "data is written once" and afterwards it is "read

many times sequentially". While, on the one hand, it is important for a write process to

finish as fast as possible no matter where the data is actually stored on the hard disk, a

read process, on the other hand, relies on techniques such as well-implemented data

placement policies. These are some reasons why for a long time the storage system was

seen as the main bottleneck in high data rate, multimedia environments (Halvorsen et al.

2003).

2.3.4 Streaming

One extreme requirement on multimedia libraries is the possibility of streaming. More

and more multimedia solutions are storing media content on a central media server where

several clients can connect to download the content. Generally media servers offer two

different streaming techniques, called real-time streaming and progressive download.

 15

Progressive download means a client downloads the complete content to the hard disk

before sending it to the multimedia application. Real-time streaming means the client

sends the content immediately to the multimedia application without storing it on the hard

disk (Galvin 2005 p.716). While both techniques have their pros and cons for the client,

real-time streaming is the worse choice for the media server. If a client uses the progres-

sive download method, it makes no real difference whether the download needs 5

minutes or 10, because the client starts the video only if the download has finished. On

the other hand the real-time streaming variant produces the drawback that the media

server must deliver the content in a special time frame to avoid breaks. Also, playing for-

wards and backwards and watching the video several times do not put weight on our

media server if the client has downloaded the content to the hard disk. The data rate and

the amount of data produced by several multimedia sources can be seen in the following

Table 1.

Source Mbps GB/hr

MP3 music 0.14 0.06

Audio CD 1.40 0.62

MPEG-2 movie (640x480) 4 1.76

Digital camcorder (720x480) 25 11

Uncompressed TV (640x480) 221 97

Uncompressed HDTV (1280x720) 648 288

Table 1: Data Rate of Multimedia Sources, Tanenbaum (2008 p.471)

2.4 Multimedia Storage System

A multimedia storage system has to deal with many issues, and since on-demand stream-

ing has become very popular, the requirements on a system have also multiplied. Even

though the computer speed and memory of a personal computer is fast enough to load

several multimedia applications, the possibly high number of concurrent users accessing

the server at the same time is a generic problem (Gemmell et al. 1996).

 16

In spite of quad-core processors and several gigabytes of memory, it is still very common

today to have to wait for seconds or sometimes minutes to get multimedia data. One of

the main reasons for this problem is the hard disk. While CPU performance has increased

16,800 times from 1988 to 2008, the hard disk has had a minimal performance increase

of only 11 times (Klein 2008, p.13). Even though producers have managed to dramatically

increase the capacity of hard disks and their sequential transfer rates, the average access

time of most current hard disk models is not very much better than it was a few years ago.

File system programmers are also aware of this situation, and therefore they spend a lot

of effort to improve their file system features. For this and other reasons, it is important to

consider what is the best file system and the best file system settings for a particular mul-

timedia storage environment, because this is the easiest way to increase general system

performance and stability.

2.5 File Systems Overview

One great benefit Linux systems have compared to other operating systems is the flexible

choice of file systems and their parameters. A system can easily be created in which pic-

tures are stored on one partition, music files on a other partition, and videos in high-

definition quality on a third partition. Each of these partitions can be formatted with a dif-

ferent file system, or with the same file system but with completely different tuning set-

tings.

One main goal of the practical tests in this research project was to find out which file sys-

tem and which parameters fit best for multimedia content. It is heard very often that mod-

ern Linux file systems are already tuned and that the performance difference between

them is marginal and can be ignored. An example that this is not true and that there is a

real need for the outcome of this project can be seen in a test result printed in the Ger-

man Linux Magazin edition 09/10 p.40-41. In this test two 32 GB partitions were created,

and one was formatted with Btrfs and the other with ext4. Afterwards the team created

99,999 very small files on each partition. The real payload of these files together was less

 17

than 1 MB total, but Btrfs needed 53 MB on the partition for the payload and the corre-

sponding metadata. This is a huge overhead and waste of space, but it is necessary from

the internal viewpoint of the file system. The result of ext4 is even more frightening, be-

cause it needed 621 MB of space for the same files. The time needed to complete the

task was also different. Whereas the Btrfs kernel module needed approximately 30 se-

conds in the kernel space, ext4 needed 9 minutes longer! This single test result shows

that the same content can produce completely different results on current file systems,

but again this doesn't mean that Btrfs is the best file system and that there is no need for

other file systems. It only means that in exactly this environment Btrfs was the better

choice.

Another interesting pair of aspects is the partition and file size. Where hard disk vendors

have succeeded has been in increasing the hard disk capacity. Today, common 3.5" hard

disks are available up to 2 TB in size (3 TB is rarely available), allowing the consumer to

create a single 2 TB partition on a single hard disk. By combining this with several other

hard disks of the same size within a RAID array, the consumer can create very large file

systems of several TB. This is again is a challenge to Linux file systems because each of

them has its own limitations. For example, ext3 supports a maximum file size of 2 TB and

a maximum file system size (partition) of 8 TB, whereas Reiser 3.6 supports a maximum

file size of 8 TB and a maximum file system size (partition) of 16 TB (Stephan 2005). Also

the amount of files per hard disk or directory cannot be ignored, as will be discussed next.

Every Linux file system has its own metadata area in which it keeps information in its own

structured way about the data stored on the partition. Within this metadata there is an

area which is used to store inode information, which is again used to store information

such as file name, owner, time stamps, block location, and so on about files and directo-

ries. Each file and each directory stored on a hard disk needs exactly one inode, no mat-

ter how small or large a file is. Depending on the file system used, inodes are allocated

either statically or dynamically. If a file system with static allocation is being used, the

decision must be made how many inodes should be created on this partition when it is

formatted. Changing the inode table size afterwards is not possible without reformatting

 18

the partition, and therefore several file systems offer dynamic allocation. Using dynamic

allocation has the benefit that when the partition is formatted, a fixed area for the inodes

is created, and if the system needs more inodes, an additional area is allocated to

smoothly increase the inode area (Sweeney et al. 1996 p.5).

One possible approach to overcome the inode problem would be to create many more

inodes on the hard disk from the beginning than theoretically needed. Whereas in ext2

the default inode count was in some cases too low, the developers have set the default

number much higher in ext3/4, but this leads to the next problem. When a computer is

shutdown without the partitions being correctly dismounted beforehand, perhaps because

of a power outage or hardware fault, for example, a so-called "unclean" and possibly er-

roneous file system is the result. At the next boot Linux will check if the partition is marked

as unclean, and if this is the case, the kernel will start a file system check (fsck) on this

partition. Now it depends on the file system used what exactly happens next, but in any

case the fsck will try to repair the file system to gain a "clean" state again, and during this

time the file system is unavailable. The time needed to repair the partition depends on

many facts, two of which are journaling and inodes. Whereas in a non-journaling file sys-

tem the kernel has to examine all of the file system's metadata, in a journaling file system

only file transactions which are not finished in the journal need to be checked. There are

also several different implementations of journaling levels and settings available and

some of them were analyzed and tested within this project.

The next impact on the file system check time is the amount of inodes. Normally an fsck

is a very slow operation because every inode in the file system must be checked. Interest-

ing to know is that the time needed to repair an ext2/3 file system depends on the amount

of inodes created, and the file system check needs the same amount of time regardless

whether the partition is filled with files or empty (Mathur et al. 2007). This is one of the

reasons why it is a bad idea to create many more inodes than needed, because this in-

creases the fsck time. The next important topic to investigate is journaling.

A journal is, broadly spoken, a hidden log file on the partition that keeps track of every

transaction on this partition. In case of an unexpected shutdown, the fsck program can

 19

dramatically reduce the repair time afterwards because of the information found in the

journal. It depends on the journaling level and settings used, but usually the log is updat-

ed before and after a transaction is executed on the hard disk. This log contains only

transactions limited to the metadata and the modification of inodes (Stephan 2005). Man-

aging all transactions within a log file creates additional overhead to the file system, and

therefore some file systems, such as Reiser3 and ext3, offer different journaling settings,

such as ordered, write back, and journal. To improve performance, some file systems

also support external journals which are saved on a different block device (Stephan

2005). In contrast, the latest ext4 version supports only one journaling mode and does not

support external journals.

In a discussion of journaling, the Linux file system JFS must be mentioned. JFS, which

stands for Journaled File System, is a 64-bit journaling file system created by IBM which

was designed to provide a robust and full journaling file system for high-performance

systems (Best 2000). One great thing about JFS is that its special journaling design al-

lows the file system to be recovered within seconds after an unexpected shutdown, even

for large partitions (Best 2000). In comparison, for its maximum partition size of 1 EB,

ext4 would need over 119 years to finish one single e2fsck (Mathur et al. 2007). Of

course at the moment this is only mathematically a possible partition size, but this shows

that the file system chosen is especially important on large partitions where high definition

videos will be stored.

Finally, tuning must be mentioned. Just as the standard file system of a Linux distribution

may be used, standard parameters could also be selected. When a file system is created

on the hard disk, some important parameters, such as block size, amount of inodes,

inode size, index support, journaling settings, and many more, can be changed. Again it

depends on the file system chosen, but many of these parameters have a huge impact on

the behavior and performance of the file system. For example, let us examine the block

size. Each file system is divided by formatting the disk into blocks of a fixed size, and

the chosen block size determines the allowed file and file system size as can be seen

in Table 2.

 20

File System File Size Limit File System Size Limit

ext2/ext3 with 1 KiB blocksize 16448 MiB (~ 16 GiB) 2048 GiB (= 2 TiB)

ext2/3 with 2 KiB blocksize 256 GiB 8192 GiB (= 8 TiB)

ext2/3 with 4 KiB blocksize 2048 GiB (= 2 TiB) 8192 GiB (= 8 TiB)

ext2/3 with 8 KiB blocksize 65568 GiB (~ 64 TiB) 32768 GiB (= 32 TiB)

ReiserFS 3.6 1 EiB 16384 GiB (= 16 TiB)

XFS 8 EiB 8 EiB

JFS with 4KiB blocksize 8 EiB 4 PiB

Table 2: Block Size Limitations, SuSE (2005)

So choosing a larger block size leads to a better support of larger files, but it could also

lead to a waste of storage space. The problem is that normally if one saves a file which is

smaller than the block size, it is not possible to use the remaining space within the block

anymore, and, depending on the file system content, this could lead to less free space.

Several file system vendors have tried to implement various techniques, such as delayed

block allocation, tail packing, and so on, to overcome this problem. The feature tail pack-

ing is enabled per default in ReiserFS 3.6. This is a technique by which multiple small

files can be saved within a logical block (Jones 2008). The benefit of this technique is that

one can save needed space, but the drawback of this solution is that it decreases the

write performance. This also the reason why one can deactivate this feature when mount-

ing the partition, which leads to the next factor, mounting options.

After the file system has been created, it must be mounted before the Linux system can

use it. A lot of default parameters can be changed in the mounting command or configura-

tion in order to change the behavior of the file system. Possible parameters include jour-

naling parameters, tail function, deactivation of access time stamps and file rights, and

many more. Some parameters are more general and valid for all file systems, but most of

them are file system specific. If these parameters are changed, the configuration should

be carefully tested, because not all changes lead to a better, securer and more stable

system.

 21

One parameter which should be carefully examined is the I/O scheduler which is used.

Each compiled kernel is configured to use a special scheduler and this scheduler has a

huge impact on the performance. Tannbaum (2008 p.467) mentions that the characteris-

tics of multimedia files are so different from those of traditional text files that even playing

a simple video creates many new and different demands on the I/O scheduler.

The I/O scheduler is responsible for bundling read and write requests and reordering data

packages to minimize disk movements (Tanenbaum 2008, p.777-778). On a Linux sys-

tem the noop scheduler, the deadline scheduler, the anticipatory scheduler and the com-

plete fair queuing scheduler (CFQ) are available. Whereas the anticipatory scheduler is

the default scheduler in the mainline kernel and fits well for desktop systems with single

disks, the complete fair queuing scheduler fits better for multi-user environments (Ecker-

mann & Tobey 2010).

Moallem (2008) examined the performance of different Linux I/O schedulers in detail and

came to the conclusion that each of them works for a special kind of environment and he

also found that different scheduler settings completely change how stable and how fast

the system performs. Even though each kernel is compiled with a standard I/O scheduler,

one can change the default system scheduler for the complete system with the kernel

boot option "elevator=SCHEDULERTYPE". Additionally one can change the default I/O

scheduler just for one (or more) special device(s) via the command:

"echo SCHEDNAME > /sys/block/*DEV*/queue/scheduler"

(Eckermann & Tobey 2010). These options give the user the possibility of choosing one

I/O scheduler for the operating system and a different scheduler for a multimedia library.

2.6 Summary

Even though each Linux distribution has its own preferred file system, as discussed, there

are many facts one should consider before being able to choose the best file system and

file system setting for a multimedia library. All of the many file systems available were

 22

created based on experience with other file systems, and very often they were created to

be the best for a particular environment or situation. Essentially, the main task of a file

system is to store, organize, and manipulate files in a fast and efficient way, no matter

whether a few large files or several thousands of small files are being stored. To fulfill this

task the file system must be precisely tuned. The problem is that each file system has its

limitations, such as maximum volume size, maximum file size, maximum count of files in

a subdirectory, and so on. At this time huge differences can be seen among the file sys-

tems which are generally available. If a file system was created mainly to handle thou-

sands of small files in a very efficient way, it may have huge problems handling extremely

large files.

On the other hand, the requirements of multimedia content vary extremely from small files

to large files, from a few files to many files, and from time-sensitive to time-insensitive

data transfer. Therefore it can be said that one single file system cannot fit perfect for

every kind of multimedia library. Of course, one could use almost any file system for mul-

timedia data, but this would only be a stopgap, as the next practical section of this docu-

ment will show.

 23

Chapter 3. METHODS AND REALIZATION

The project evaluation objective was to identify and evaluate existing Linux file systems

and their behavior in multimedia file systems. Analyzing the requirements of multimedia

files, such as different file sizes, typical file amount, and so on, was the first step in this

project. Multimedia libraries can contain anything from very small to quite large files. To

obtain more practically oriented results in the lab, it was decided to create several multi-

media libraries containing real multimedia content as part of this project. Each library was

filled with one kind of multimedia content, as can be seen in the next table, Table 3.

Lib # Library Name Content Information

1 pictures Pictures of all sizes and formats

2 sound MP3 and ACC files from several iTunes libraries

3 video Video files of movies

4 video-hd Full HD Video files

Table 3: Multimedia Library Content

Of course it would have been much easier to create libraries with simulated files of an

exact size, but this would not have simulated a realistic environment. To analyze special

situations and strange test results with the multimedia libraries it was still necessary to do

tests with simulated files, but the main focus for all tests was using the real libraries. The

outcome of these experiments was used as an additional source for the exploratory study

of Linux file system features and their positive and negative impacts on multimedia files.

After this part of the testing, a list of parameters and file system features, such as block

size, journaling settings, mount options, and structure options, was available. The out-

come of all tests and the exploratory study was used to repeat several experiments with

optimized settings. A conclusive comparison at the end of the project shows the perfor-

mance effects of using standard file system parameters compared to tuned settings in

multimedia environments.

3.1 Multimedia Libraries

Each library which was created as part of this project was stored on a 750 GB hard disk

and was filled to approximately 600 GB with one kind of multimedia content (pictures,

 24

sound, video-normal or video-hd files). The exact content of each library was only filtered

based on the kind of multimedia type and not on a special file size. So, for example, the

library pictures were created by merging several different libraries containing picture files

without concern about how small or large they were. The directories (and the number of

directories) were also incidentally created by the copy and move process by creating the

libraries. Depending on the kind of multimedia content stored, the average file size and

the amount of files per library differ greatly, as can be seen in the following table, Table 4.

Library
name

Used Size
Bytes

Directory
count

File
count

Smallest
File Size

Largest
File Size

Average File
Size

picture 628,073,484 415,766 1,345,102 0.03 KB 3.2 MB 0.46 MB

sound 628,794,564 28,626 100,621 1.3 MB 9.1 MB 6.10 MB

video 627,756,276 1,317 11,617 5.3 MB 110 MB 52.77 MB

video-hd 628,153,840 243 35 987 MB 36,840 MB 17,526.61MB

Table 4: Multimedia Library Details

3.2 Testing Rules and Environment

The tests were performed in two different system environments:

Environment 1: Default Settings

The first phase of tests was based on a system with kernel and file system default set-

tings and no special tuning was done. All tests were based on the following order and

were repeated for all five file system and for all four libraries:

1. Format the hard disk with the test file system and default parameters

2. Mount the test file system with default parameters

3. Collect some file system parameters of the test file system (inode count, size, ...)

4. Copy library X to the mounted test file system

5. Collect free and used space parameters

6. Dismount the test file system

7. Accomplish a forced file system check on the test file system

8. Mount the test file system with default parameters

9. Delete all files from the test file system

10. Dismount the test file system

 25

The complete testing scenario were repeated three times, to ensure accuracy. The num-

bers shown in the raw data in the diagrams are the average result of these three tests.

The exact raw data of each tests can be found at the end of this document in the appen-

dix section.

Environment 2: Optimized File System Settings

Based on the research result the file system settings, such as format options and mount

options, were tuned to best fit this kind of multimedia files. Afterward some tests from the

first phase were repeated to examine differences to the default settings.

3.2.1 General Testing Rules

 All tests were run at least twice

 Between each test, the system was rebooted to clean up the system cache

 Kernel version and software environment remained unchanged during tests

 All nonessential services were stopped before running the tests

Software environment

All testing were performed with OpenSUSE 11.3 and the latest stable vanilla kernel 2.6.36

The following file systems were tested: ext4, ReiserFS, XFS, JFS and Btrfs

Hardware environment

For the lab environment 4 PCs with the following hardware specification were available:

 Motherboard: ASUS S775 P5Q Deluxe

 Processor: Intel Core 2 Quad Q9400 (4x 2.67GHz)

 Memory: 4GB DDR2 PC-800 (to reduce memory cache effects the available

memory was limited by most tests by using the Grub kernel parameter

"mem=1000M")

 26

 Hard disk: 2x Samsung SATA2 750GB, 32MB Cache, 8.9ms, 7200rpm (one disk

for the operating system, log files, and traces and the other disk for running the

test workloads).

 Several other hard disks of the same type were used as library source media

Benchmark Tools

To carry out performance tests the following freely available benchmarks tools and Linux

commands were used:

 Bonnie++ v.1.03, which the Linux mainstream benchmark suite used to perform

a number of simple tests of hard drive and file system performance. Available

from: http://sourceforge.net/projects/bonnie

 Linux tools dd and tar were used to create test files in various sizes as needed

 Linux command line utilities such as: time, stat, free, iostat and so on were used

for system diagnostic during the tests

 27

Chapter 4. EVALUATION AND RESULTS

This chapter describes the outcome of some practical experiments with default and tuned

system settings. Conceptually, there is always a gap between theory and practice and

therefore was it important in this project to include experiments with before unknown test

results. Such test results are necessary not only to prove already known facts, but also,

and even more importantly, to find unexpected behavior.

4.1 Outcome Test Scenario I: Default Settings

4.1.1 Format Time

Formatting a hard drive partition with a file system is the initial process of creating a new

file system. Part of this process is that the file system creates the metadata area which it

needs and the block area is prepared. Whereas in the past this process was also known

as the process which deletes or sweeps everything from the hard disk, this is not true

anymore. The test results in Figure 1 show that formatting a 750 GB hard disk takes from

0.042 to 155.836 seconds.

Figure 1: Partition Format Time

 28

It is absolutely impossible to sweep a 750 GB hard disk in less than a second, and it is

also not really possible to do it in 155 seconds. Aside from sweeping the block area, a

longer format time can also be caused by a different metadata handling. Ext4 is known as

a file system with static inode allocation, which means that during the formatting process

the exact inode amount is determined and allocated. On the other hand, file systems such

as btrfs use a dynamic allocation, which means the inode tables are prepared if they are

needed. In general it is not a bad thing if the formatting time takes a little bit longer, be-

cause this could also mean that other processes are afterwards faster because the file

system was already prepared for it. If a faster formatting time of ext4 is needed one can

use the fsck.ext4 option "-E lazy_itable_init=1" which has the effect that the inode table is

initialized in the background when the file system is the first time mounted (Ubuntu

2010,c). The next fact which can be improved is the default amount of inodes created

from the ext4 fsck program. Table 5 shows that the largest amount of inodes needed can

be found on the partition of the picture library, because it includes 1,345,102 files and

415,766 directories.

Library
name

Inodes needed
for library

Inodes created
by ext4 fsck

picture 1,760,868 45,793,280

sound 129,247 45,793,280

video 12,934 45,793,280

Video-hd 278 45,793,280

Table 5: Needed Inodes

Together this makes 1,760,868 inodes needed, but the fsck program created 45,793,280

inodes for this partition. This is not only a huge waste of unused inodes, but it also caus-

es an unnecessary burden on our partition. Even worse is the inode result on partitions of

the other libraries, because they store much less files and directories but the same default

amount of inodes were created. It is possible to reduce the amount of inodes created by

formatting the disk via the fsck.ext4 option "-N exact-number-of-inodes" or "-i bytes-per-

inode" (Ubuntu 2010, c)

 29

4.1.2 Copy Time

One of the main factors in working with a multimedia library is the time it takes to fill it with

data. The diagram in Figure 2 shows that the chosen file system with its default parame-

ters has a huge impact on the time needed.

Figure 2: Library Copy Time

Interesting to find out that was, Btrfs was the fastest in nearly every library. This is im-

portant information, because it seems that in comparison to other file systems Btrfs be-

haves very quickly with its default parameters no matter whether it has to handle small or

large files. Sweeney et al. (1996) mentions that Xfs was created to perform well with very

large files. This is perhaps the reason why Xfs shows better results with larger files than

with smaller files. Based on the very bad test results when creating the picture library, it

must also be said that Xfs would be a bad choice for this kind of data. The data in the

table shows in detail that Xfs needed 247 minutes longer than Btrfs to copy the same

content. Which is was nearly twice as long. In general it seems also that ext4, which is the

default file system in most of the newest Linux operating systems, is also a good choice

for these libraries. Important to note is that the partition was formatted with ext4 and it

was not converted from ext3, because 100% ext4 functionality is only available when the

partition is originally formatted as ext4.

 30

4.1.3 Statistics for Nearly Full Library

The used and free spaced results of the libraries should not really be surprising. In all

cases the same partition size and the same amount of source data was used, and there-

fore the results in Figure 3 should be equal.

Figure 3: Size Used

XFS is the winner in the picture library because it needed 2,891 MB less than Btrfs for the

library content. The picture library is also the library which contains the most and the

smallest files. Not every file system can handle such small files in the same way, and for

the size used in the test a difference of over 2 GB can be seen. It is interesting that the

size used is inversely proportional to the copy time. Whereas Btrfs showed the best copy

time in the picture library, it also needed the most space. The reverse was true for the Xfs

file system: it needed the least space but also the longest time for the copy process.

Among the other three libraries there were mixed results, but the difference between the

best and the worst result was never more than 2 GB. Interestingly ReiserFS only shows

good results with smaller files. Of course because of tail packing it should work great in

environments with smaller files, but this would not necessarily mean that it should work

worse with larger files.

 31

Next the free space on the hard disk after the copy job was examined. Although all

other file systems in Figure 4 show only a small difference of around 2 GB, ext4 is

48 GB behind!

Figure 4: Size Free

This strange result prompted a lot of additional tests, because it was not at all clear

why ext4 showed nearly the same size used, but ~48 GB less free space. A lot of time

was spent trying to find the reason for this loss, and whether it was a result of data

placement strategies or metadata handling, but the reason was much simpler and could

finally be found in the task "formatting the file system". As the next figure, Figure 5, shows

this huge gap is already there after the file system is formatted. It does not occur when

the data is copied.

 32

Figure 5: Free Size after Format

Tests with different partitions sizes showed that this gap is always there and that it grows

with the partition's size. At last it was learned that this gap is a standard feature of ext4

and it is called "reserved space for root". According to the man page for ext4, 5% of an

ext4 file system is reserved for the super user called root, and this percentage should

avoid fragmentation and-- the most important fact-- it should prevent that a non-privileged

process fill up the complete partition (Ubuntu 2010,c).

This feature alone can lead to a lot of discussion, but from the viewpoint of this project the

following conclusions were drawn:

 Five file systems were tested and only one of them offers this feature

 Filling up a partition is a huge problem on the root file system because it prevents

the system from being able to work correctly and the root user from being able to

solve this problem

 Filling up a data partition also leads to problems, but the Linux system should still

be working as usual and the root user should not have problems to fix this

 File system quotas can be used to restrict the file system space for non-root us-

ers and their processes

 And last but not least, 5 percentage as a general rule is not ideal. On a smaller

partition this value could be good, but on larger partitions this could be a huge

waste of space

 33

Another thing which is important to mention is the fact that all tests were performed as

root, and also all results were presented using commands as the root user. So even

though the root user was used to show the free and used space, the Linux system did

not show the reserved space for the root user when the Linux command "df" was used.

This means that normal Linux commands do not show the root user this reserved space,

and therefore it could easily be forgotten. On a partition of 2 TB this standard feature

would reserve 100 GB!

4.1.4 File System Check

In general the low file system check times of all five file systems in Figure 6 were wonder-

ful news. Only ReiserFS needed a longer time for checking the file system in all libraries,

but even this time was not really bad, since the difference is just a few minutes and not a

few hours.

Figure 6: File system Check Time

However, such fast file system check times were not always normal, and the following

diagram in Figure 7 demonstrates the difference and improvements of, for example, ext4

compared to its older versions.

 34

Figure 7: fsck Time vs. Inode Count, Mathur A. et al. (2007)

This diagram above shows that the e2fsck time of ext3 increases "linearly with the total

number of inodes in file system, regardless of how many are used," which means that

e2fsck takes the same amount of time to repair a file system without a single file as with

several millions of files, because only the number of inodes count (Mathur et al. 2007)!

To speed up fsck time, the ext4 developers implemented a mechanism to store all unused

inodes within a checksum-secured table, and therefore the fsck time can be 2 to 20 times

faster than before (Mathur et al. 2007). The drawback of this solution is that the table with

the unused inodes is created by the fsck program, and therefore the first check is always

slower.

As can be seen, there are several solutions available to reduce the fsck time, but the

easiest task a user could perform is to tune the inode amount for the expected file and

directory amount of the multimedia library. Especially if one wants to store larger video

files on the file system and knows that the 600 GB library can be filled up with 50 large

video files, there is no need to let the ext4 file system create over 45,000,000 inodes for

such a partition!

4.1.5 Delete Time

The next main factor in working with a multimedia library is the time for deleting data. In

contrast with read requests for files this is a task which seldom happens. Normally a file is

deleted if it is not needed anymore, and one might think that time should be not that im-

 35

portant, but this is wrong. Deleting a file has many impacts on a system and some of the-

se impacts will be discussed here first. Deleting a file happens not only when the user

wants to get rid of one. Instead very often deleting is a part of a move process. If a file is

moved within a partition, only entries in the metadata must be changed, and therefore this

is not a strenuous process. On the other hand, if data is moved from one partition or hard

disk to another, this move process could create a large load on the system, because in

this case there are both create and delete processes for the block of data. The next dia-

gram in Figure 8 illustrates this point:

Figure 8: Library Content Delete Time

Even though 600 GB was used in each library, there are extremely large delete time dif-

ferences! This time the analysis of the result much more difficult because there is no

straight forward rule such as "file system X needs always more time than file system Y".

But, why are there even differences within a library, when each file system contains the

same amount of files and directories?

The first reason could be the file amount. From left to right each library contains less files.

For example, the pictures library includes 13 times more files than the sound library and

38,431 times more files than the video-hd library. One trend which can seen is that the

amount of files has an impact on the delete time but not exponentially. The differences

can be seen better in the raw delete time data. Xfs showed that it cannot handle a large

amount of small files as efficiently as the other file systems, and the delete time of the

 36

picture library demonstrates exactly the same problem. It can also be seen that XFS can

handle large files better than its competitor because it produced the best results in the

video-hd library. Another question which should also be discussed is, what happens ex-

actly if a file is deleted? The short answer is, it depends entirely on the file system used.

A lazy approach is that the files within a directory inode are only marked as available, and

an excessive approach is that additional a real cleanup in the block area had happened.

Which approach is better depends mainly on the three factors: time, security, and system

load.

The first factor is time. If a library is filled with content and the user want to save new ma-

terial in it, he or she must first delete some or all older content. It depends on the user, but

in this case one could say that the user would prefer a delete time of seconds instead of

minutes or hours. Even if the user knows that the data blocks will not be deleted and only

the metadata area is cleaned up, he or she can start in a short time with the initial task of

copying new material to the partition. On the other hand there is the factor security. Eve-

ryone who has seen a police movie, such as CSI, knows that deleted data can be re-

stored from a hard disk. Here again it depends on the needs of the user, but even though

fast deleting time is always nice, it may be that it is more important that the deleted con-

tent cannot be recovered anymore. Not only people with questionable intentions try to

securely delete data, but also companies and governments are interested in preventing

other people from recovering deleted data.

The last factor is the work and system load. Cleaning up metadata and block data costs

not only time, but it also costs resources. It depends on the overall system power, but

cleaning up a larger partition could produce such a load on the system that in the mean-

time it cannot be used for other tasks. As can be seen in the test results above, this con-

cerns a time difference of 1 seconds to 100 minutes during which the system is busy.

Especially in multimedia environments it is important that the system can deliver content

in a fast and dedicated time frame. Take, for example, in a situation where several video

streams send data to media players at the same time and the administrator must delete

some older files to have room for newer video files. Would it be useful in this situation for

the delete process to be secure, but the video stream is not fluent anymore? Especially

 37

in smaller or cheaper multimedia environments this has a larger impact. It would not be

an unusual situation for the boy to be sitting in the living room watching a recorded foot-

ball match while his sister is sitting in her room watching a recorded soap opera which

she loves. This would not be the best moment for the father to start to securely cleaning

up some older files on the multimedia library because he wants to make space for new

content.

4.1.6 File Creation Time

The libraries include files with a lot of different file sizes, and therefore additional tests

with simulated files which all had the same size were performed. Based on the results of

these libraries it was interesting to see how much the creation time had an impact on the

copy time. In the following test files from 1 GB up to 256 GB were created using the Linux

dd command. Figure 9 shows that the file creation time continuously grew as expected.

Figure 9: File Creation Time Test 1

For all file sizes, xfs had the worst (longest) creation time, followed by reiserFS. The fast-

est result was produced by jfs and btrfs, both of which always needed nearly the same

amount of time.

 38

The next test was to fill a library with files of a particular size. The first task was based on

creating 500,000 1MB files, and the second task on creating 20 files of 25 GB each. Both

tasks were performed using the dd command with the file system cache deactivated. In

summary, both tasks in Figure 10 created the same amount of data, 500 GB, and the only

difference was in the amount of files.

Figure 10: File Creation Time Test 2

This simulated test also produced the result that xfs is not the best file system for such so

many small files and that jfs is again a little behind btrfs. The results of ext4 are very

good and comparable to library copy tests. It seems also that all the file systems which

were tested behave much better in environments with larger files. This is again an inter-

esting outcome, because based on the test results one could say as a rule of thumb that

environments with smaller files must be more carefully planned than those with larger

files.

4.2 Outcome Test Scenario II: Optimized Settings

This chapter will clarify some of the effects of changing default file system parameters

and their impact on the multimedia libraries. The last chapter showed that the same file

system parameters produce different test results for different kinds of libraries. Under-

standing this is important, because this means that changing some settings also has its

 39

pros and cons. On the one hand, different settings can lead to a much more efficiently

tuned system, but, on the other hand, they can also lead to a much more unstable or risky

system. Also it may be that the default settings fit better for one kind of environment and

changing them could lead to poorer results because the default settings were already the

best. Finding the right balance between better performance and a more risky system is

very difficult and depends on many factors, such as the environment and the availability

needed from the system. To avoid discussions about too risky parameters this project

only tested parameters which could improve the system without increasing the instability

of the system too much. Several tests in this project led to either the same or, very often,

even much worse results. A discussion of all negative results would be very interesting,

but is not within the scope of the project. Therefore this chapter provides only a small

subset of the results.

4.2.1 Mount Options

Many documents such as (Brindley 2010, p.9) discuss several mount options to improve

performance, and two options called noatime and nodirtime are mentioned very often.

Both mount options are used to prevent the update of the last access timestamp each

time a file or directory is accessed. Not only does this feature reduce unnecessary journal

activity and useless disk writes, but it can also help to reduce the power consumption

(Brindley 2010, p.9). This feature can be activated via the mount option "-o no-

atime,nodirtime" or by using a similar entry in /etc/fstab. Because the access time is not

really relevant for most of our multimedia environments, this feature can be activated to

improve performance. Especially in environments with a lot of read and search actions in

the file system this feature could be a benefit. In all the following tests the partitions were

mounted with the option "-o noatime,nodirtime".

4.2.2 Ext4

Earlier tests in this document have already shown the impact and importance of the for-

matting process parameters. Among all the file systems tested, ext4 needed the longest

 40

time for the formatting process. ext4's reservation of 5% of the space for root and the too

large amount of default inodes can only be manipulated by using different ext4 format

options. Several ext4 formatting tests were performed to find better parameters. To show

the impact of different parameters four ext4 formatting tests are compared in Figure 11.

Figure 11: Format Time ext4

The first Test time was obtained using the default format options. The second Test time

was obtained by additionally deactivating the reserved root space with the option "-m 0".

In addition to the option from Test 2, Test 3 included option "-N 3000000" to create a

much smaller amount of inodes. In Test 4, in addition to the other changes, the inode

allocation delay was also deactivated by using the option "-E lazy_itable_init=1". The

result of these tests are very helpful, first because they show that the tuned format time is

29 times faster than the default time. Second, with the option "-m 0" the 5% reserved

space for root has been deactivated, which leads to ~46 GB of more free space for the

libraries. The next thing which should be checked in the impact of these parameters is

one of the main factors in this project, the copy time. Figure 12 shows the copy time of the

picture and video-hd library with the optimized format options. The copy time of the pic-

ture library increased by 9.6 minutes and by 0.45 minutes when copying the video-hd

library.

 41

Figure 12: Tuned Library Copy Time

This slightly increased copy time was produced by the delayed inode allocation features

which saved 12.4 seconds of formatting time. Of course there are situations where this

feature would be a benefit, but based on these test results it would be better to decrease

only the amount of inodes. This alone saved 130.8 seconds of formatting time.

4.2.3 Xfs

The next file system which had shown room for improvement was xfs. The format time of

xfs was already very good, so there was no need to improve it, but the time for creating

and deleting small files was not so good. In general it seems that xfs could not handle a

very large number of metadata operations as fast as the other file systems. The best op-

tion the man page of xfs lists to improve metadata operations is to manipulate the size of

the xfs log by using the option "-l size=XXm". Additionally it would also be possible to

move the log to a different partition to increase the performance, but because all of the

test scenarios in this project are based on a single multimedia disk environment, this op-

tion was ignored. The next parameter the Linux man page mentions to improve perfor-

mance is the parameter "-l lazy-count=1", which basically reduces superblock modifica-

tions (Ubuntu 2010,a). The benchmark tool bonnie++ was used to create test results us-

ing the xfs default settings and the xfs tuned settings. Figure 13 shows the results of the

 42

default format parameters compared to Figure 14 with the optimized format settings "-l

size=64m lazy-count=1".

Figure 13: Bonnie++ Output with Default Settings

Figure 14: Bonnie++ Output with Tuned Settings

Both tests results were obtained using the command "time bonnie++ -d /media/cpcheck/ -

u root -s 40000 -f -b -n 5" and therefore produced the same amount of benchmark data.

Most of the resulting numbers are the same and one can see very small differences only

in areas such as sequential input and sequential delete, but these are also the areas

where improvements are needed. Even though the differences found are very small they

do have a measurable impact on situations where, for example, a copy job needs two or

three hundred minutes. The real impact of the above mentioned parameters on the librar-

ies can be seen in Figure 15 and Figure 16.

 43

Figure 15: Xfs Picture Library Copy Time

Figure 15 shows that the copy time needed decreased from left to right where 30.4

minutes less were needed for the library copy job! The largest gap in this diagram can be

seen between Test 1 with default settings and Test 2 where the main difference was an

increased xfs log of 64 MB. Increasing the log from 64 MB to 128 MB in Test 3 did not

change the copy times dramatically any more. The picture library is the library with the

smallest and largest number of files and thus benefitted greatly from these tuning set-

tings. Therefore the next question was what effect would these parameters have on the

video-hd library which contains large files. Figure 16 shows the copy time of the tuned

Linux environment compared to the default settings, and, as can be seen, there is no

huge difference.

 44

Figure 16: Xfs Video Library Copy Time

Even though the copy time in the second Test was 2.06 minutes faster than in Test 1 with

the default settings, this is not comparable with the 30.4 minutes faster copy job result in

the picture library. Increasing the log size and the log buffer in Test 3 and Test 4 leads in

this library to an approximately 2.01 minutes longer copy time than with the default pa-

rameters in test 1. In summary, it can be said at this point that the increased log size of 64

MB brought the biggest improvement for the two libraries and that the other settings

which were tested produced even a little bit worse results.

Now it is time to discuss the impact of these parameters on the deletion time of xfs. The

last chapter showed that the deletion time of xfs was much worse in environments with

many small files. The next diagram, Figure 17, shows that the tuning parameters tested

above also have a positive effect on the deletion time. The largest time difference is 5.35

minutes and can be seen between Test 1 with the default setting and Test 4 with in-

creased log settings.

 45

Figure 17: Xfs Picture Library Delete Time

This was the next proof that changing the xfs log size to 64 MB produces a better results

in environments with many small files than one gets using the default settings.

4.2.4 ReiserFS

Several tests with ReiserFS format options and Bonnie++ and some theoretical research

led to the idea that changing the ReiserFS journaling mode to "writeback" or the Linux I/O

scheduler to "deadline" could have a good impact on the performance. To check this out

these settings were used to repeat the sound library test where ReiserFS had not shown

very good results. Figure 18 and Figure 19 show the impact of these two parameters on

the copy and delete tasks using the sound library.

 46

Figure 18: ReiserFS Sound Library Copy Time

Figure 19: ReiserFS Sound Library Delete Time

The problem is that this time the results were not as clear as in the other tests discussed

above. Using the journal mode "writeback" led to a longer copy time of 0.68 minutes but

to a shorter deletion time of 1.02 minutes. In the copy results of test 3 with the additional

change to the deadline scheduler there was a much worse result in the copy time, but

again a better result in the deletion time. Simply said, using these two tuning parameters

leads to the situation where one could choose between a better copy or deletion time, but

not both.

 47

4.2.5 JFS

JFS showed good results in every respect. No matter whether JFS has to handle small or

large files, the default settings of this file system seem to fit well for every environment.

Therefore it was decided to test different I/O scheduler settings to see if JFS could benefit

from a different scheduler. This time the test results were clear because, as Figure 20 and

Figure 21 show, JFS produced better copy and deletion times with the cfq-scheduler.

Figure 20: JFS Sound Library Copy Time

Figure 21: JFS Sound Library Copy Time

 48

Whereas in the ReiserFS performance tests the deadline scheduler produced a better

deletion outcome, the results in Figure 20 and Figure 21 show that in both tests JFS

worked faster with the cfq scheduler. This is again an interesting outcome because it

shows that a different scheduler can,for example, lead to a better deletion performance

on one file system while the same scheduler leads to a worse deletion performance on a

different file system.

 49

Chapter 5. CONCLUSIONS

Based on the results which were achieved in this project due to the different experiments,

it is proven that one kind of file system using only the default parameters, cannot fit per-

fectly for every type of multimedia. These experiments also show that there is large varia-

bility in the results which are summarized in this chapter.

5.1 Lessons Learned

In summary, one can see that there were differences of up to 155 seconds in the format-

ting time, and up to 247 minutes in the copy time, which is nearly twice as long as the

best file system needed in this test. There were 48 GB of difference in free space on a

~700 GB partition, 22 seconds difference in a standard file system check, and, last but

not least, 95 minutes of difference when deleting the same library. The research experi-

ments in this project also showed that these time differences vary extremely depending

on the size and amount of files stored. Even though some file systems, such as Btrfs and

JFS, showed great results in all tests, there are still differences within each library. A very

interesting outcome of this project is that the largest problems shown in these test results

could be easily manipulated by using some simple parameters. For example, the format

time of ext4 could be decreased by 29 times and at the same time 48 GB of space could

be freed for user and daemon processes. Also, the very poor copy performance of xfs

using the picture library could be decreased 30.4 minutes just by using a larger xfs log

parameter. The test results of ReiserFS 3.6 were a little disappointing, because for years

ReiserFS was the default file system on every SUSE Linux system, but the results are

bad compared to the other file systems tested. One reason for this could be that the Rei-

ser developers have perhaps mainly been working on the next version, version 4, of this

file system and have not spent that much time on improvements on the older version any

more. In any case, according to the test results of this project, it would not be a good de-

cision to use ReiserFS 3.6 for these kinds of multimedia libraries without using better

 50

tuning options. The results of Btrfs in this project were very interesting. Of course this file

system is still under development and is not marked as stable, but in nearly every test it

was in first or second place. Compared to the other file systems, the test results for Btrfs

in this project show that in the future an excellent and well-performing file system could be

available which can handle both small and large files very well. The impact of I/O sched-

ulers on the performance should not be underestimated and, as tests in this project have

shown, the same I/O scheduler can produce different results on a different file system. A

general overview of the test results with default parameters can be seen in Table 6.

Table 6: Overview of Experiments with Default Settings

The strengths and weaknesses of this research should be mentioned. The theoretical part

is based on many well-known books, theses and dissertations about multimedia, Linux

operating systems and Linux file systems which is one of the project strengths. Advisedly

this project has not referenced many benchmarks from other authors, because they may

 51

not be accurate anymore. The Linux kernel changes so quickly, and therefore it is possi-

ble that some benchmarks cannot reproduced with a newer kernel. Therefore it was bet-

ter to produce new benchmarks which are based on the newest kernel version. The main

weakness this project has is that the practical experiments were mainly based on self-

created libraries. If someone would create a new library with the same kind of content, it

would not be very surprising to receive see some different test results. The reason for

this is that all of the libraries were created by copying several libraries together, and this

has led to a wild mixture of file sizes and directory structures. This method has led to a

more natural situation, but also to a environment which cannot be recreated 100% again.

In retrospect this method was still a good decision, because the goal of the experiments

of this project was to examine how one special multimedia library behaves on several

different chosen file systems.

5.2 Research Question Revisited

The first main research question in this project was "What impact does a file system and

its characteristics have on the performance of a multimedia system?" The answer to this

question is not easy, because it depends on many factors. This document has already

shown that one would receive different test results and behavior if the underlying file sys-

tem changes, but this document has also shown that the behavior changes if the underly-

ing file system does not change, but the kind of multimedia content changes. The experi-

ments with tuned settings show that even one parameter, for example can increase the

copy time, while at the same time the delete time decreases.

How large the impact on the multimedia system is depends on many facts such as

amount of files, type of content, amount of data and the streaming functionality needed.

One interesting fact this research project has shown is that there is not only one kind

of multimedia system available. Each system is different and each of them produces

different results. Whereas a small personal multimedia library server can perhaps deliver

two streams at the same time without problems, it could break down in an environment

 52

with 10 or more streams. So in conclusion, in answer to the research question one could

say that the file system usually has a large impact on a multimedia library, but it depends

on expectations of the multimedia library owner if this impact is important or can be ig-

nored.

The second main research question in this project was "Which Linux file system fits better

for which kind of multimedia files?". Based on the outcome of the experiments, this again

is difficult to answer. The main problem is that the experiments have shown very large

variability in the results and there is no straight winner in all disciplines. The next problem

is that most of the best results in Table 6 were produced by the unstable file system btrfs.

Although btrfs produced such great results, due to the instability, it should be carefully

considered! The libraries picture and sound, which contained smaller and more files than

the other libraries were most affected by the underlying file system. The Libraries video

and video-hd contained the largest files and in these environments most of the results

were marginal. Based on all experiments in this project, one could come to the conclu-

sion that especially environments with more and smaller files should be carefully exam-

ined. As illustrated in the following table, Table 7; for every kind of multimedia library three

recommended options are listed. Due to the fact that Option 1 produced the best result it

should be considered as first choice. However, if Option 1 for any reason is not available

or undesirable then Option 2 or Option 3 are recommended.

Table 7: File System Recommendation for Specific Library

 53

5.3 Future Activity

Every few months a new Linux kernel version will be released, and with each new kernel

version there is a chance that the code of the file systems or of some built-in functions,

such as the I/O scheduler, could have changed. Especially btrfs, which is currently not

marked as stable in the kernel source code, could experience code changes to achieve a

stable status in the near future. Whereas such changes or improvements are normally

good for the industry, they also lead to the problem that older benchmarks or experiments

need to be redone, because they may not be valid anymore. This is one of the reasons

why experiments and benchmarks need to be repeated regularly.

5.4 Prospects for Further Work

This research project has shown that every Linux file system behaves differently with

different kinds of multimedia files. On Linux there are several file systems available, and

each of them offers different possibilities for improvements. Based on the experience of

this project, it would be advisable to create a separate partition for each kind of multime-

dia file and to tune each partition exactly for this kind of file. Helpful for this task would be

an exact list of formatting and mount parameters which exactly fit the current Linux kernel,

the file system used, and the kind of multimedia files. Differences of 247 minutes in the

copy time should not be ignored, especially if improvements can be made by changing

only a few parameters. This tuning is even more important when the multimedia server

has to handle several streams at the same time. This project has even found large per-

formance differences between different Linux file systems when nearly all tests were

based on one single user request. This leads to the question whether one would see the

same test results in more stressed situations with several user requests at the same time.

 54

REFRENCES CITED

Best, S. 2000. "JFS Log" [Online] Available from:
http://jfs.sourceforge.net/project/pub/jfslog/jfslog.pdf [accessed 23 August 2010].

Brindley, L. 2010. "Red Hat Enterprise MRG 1.3 Realtime Tuning Guide" [Online]
Available from: http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.3/pdf/
Realtime_Tuning_Guide/Red_Hat_Enterprise_MRG-1.3-Realtime_Tuning_Guide-en-
US.pdf [accessed 10 December 2010].

Busse, I. & Deffner, B. & Schulzrinne, H. 1995. "Dynamic QoS Control of Multimedia Ap-
plications based on RTP" [Online] Available from:
ftp://gaia.cs.umass.edu/pub/Buss9601:Dynamic.ps.gz [accessed 21 August 2010].

B&H 2010. "Digital Camera Resolution Chart" [Online] Available from:
http://www.bhphotovideo.com/FrameWork/charts/resolutionChartPopup.html
[accessed 22 August 2010].

Carrier, B. 2005. File system forensic Analysis
Available from: Addison Wesley, ISBN 0-321-26817-2.

Fulton, W. 2010. "Memory cost of images" [Online]
Available from: http://www.scantips.com/basics1d.html [accessed 22 August 2010].

Chapman, N. & Chapman, J. 2009. Digital Multimedia (third edition)
John Wiley & Son, Ltd, ISBN 978-0-470-51216-6.

Eckermann, M. & Tobey, B. 2010. "Two Paths to Server Performance" (Magazine)
Novell Connection Magazine JUL_2010.

French, S. 2008. "Around the Linux File System World in 45 minutes" [Online]
from:http://ols.fedoraproject.org/OLS/Reprints-2008/french-reprint.pdf.

Gartner 2007. "File System Innovations Growing in Importance"
ID Number G00145638.

Galvin, P. B. 2005. Operating System Concepts
Wiley, ISBN 0-471-69466-5.

Gemmell, J. et al. 1996. "Multimedia Storage Servers: A Tutorial" [Online] Available from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=384117
[accessed 18 December 2010].

Halvorsen, P. et al. 2003. "Storage Systems Support for Multimedia Applications" [Online]
Available from: http://www.duo.uio.no/sok/work.html?WORKID=70852
[accessed 18 December 2010].

Helba, S. 2009. Investigating Hard Disks, File and Operating Systems
Course Technology, ISBN 978-1435483507.

Johnson, S. & Huizenga, G. & Pulavarty, B. 2005. Performance Tuning for Linux Servers
IBM Press, ISBN 0-13-144753-X.

Jones, T. 2008. "Anatomy of Linux journaling file systems" [Online]
Available from: http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux/l-journaling-
filesystems/l-journaling-filesystems-pdf.pdf [accessed 20 November 2010].

 55

Kang, S. 2007. A dissertation about "Flexible allocation and space management in stor-
age systems" [Online] Available from: http://repository.tamu.edu/handle/1969.1/5968
[accessed 18 December 2010].

Kernelnewbies 2010. "Ext4" [Online]
Available from: http://kernelnewbies.org/Ext4 [accessed 22 August 2010].

Klein, D. 2008. "History of Digital Storage" [Online]
Available from:
http://download.micron.com/pdf/whitepapers/history_of_digital_storage_wp.pdf
[accessed 15 August 2010].

Leung, A. 2009. A dissertation about "Organizing, indexing, and searching large-scale file
systems" [Online] Available from http://www.ssrc.ucsc.edu/pub/leung09-ssrctr0909.html
 [accessed 18 December 2010].

Liao, H. 2003. "Storage Area Networks Architectures" [Online]
Available from: http://www.pmc-sierra.com/cgi-bin/document.pl?docnum=2022178
[accessed 15 August 2010].

Linux Magazin (2010) "In der Baumschule"
Linux Magazin edition 09/10 (German).

Loizides, C. 2001. "Analyse und Simulation von Fragmentierungseffekten beim ”Rei-
serFS” Dateisystem" [Online]
Available from: http://www.informatik.uni-frankfurt.de/~loizides/reiserfs/reiserfs-diplom-
loizides.pdf [accessed 13 April 2010].

Love, R. 2005. Linux Kernel Development
Novell Press, ISBN 0-672-32720-1.

Mathur, A. & Cao, M. & Bhattacharya, S. 2007. "The new ext4 file system current status
and future plans" [Online] Available from: http://www.kernel.org/doc/ols/2007/ols2007v2-
pages-21-34.pdf [accessed 22 August 2010].

Moallem, M. 2008. A dissertation about the "performance evaluation of Linux I/O sched-
ulers" [Online] Available from: http://gradworks.umi.com/MR/38/MR38892.html
 [accessed 18 December 2010].

Murray, J. & Vanryper, W. 1996. "Encyclopedia of Graphics File Formats"
 2nd Edition, O'Reilly Media, ISBN-10: 1565921615
Online available at: http://www.fileformat.info/mirror/egff/index.htm
[accessed 7 November 2010].

Niranjan, N. 1996. A doctoral dissertation about the "File System Support for Multimedia
Applications" [Online] Available from: http://portal.acm.org/citation.cfm?id=924911
[accessed 7 April 2010].

Ubuntu 2010,a. "Ubuntu Manpage: mkfs.xfs" [Online]
Available from: http://manpages.ubuntu.com/manpages/lucid/man8/mkfs.xfs.8.html
[accessed 20 November 2010].

Ubuntu 2010,b. "Ubuntu Manpage: mkfs.btrfs" [Online]
Available from: http://manpages.ubuntu.com/manpages/lucid/man8/mkfs.btrfs.8.html
[accessed 20 November 2010].

Ubuntu 2010,c. "Man Page for mke2fs - create an ext2/ext3/ext4" [Online]
Available from: http://manpages.ubuntu.com/manpages/karmic/man8/mkfs.ext2.8.html
[accessed 20 November 2010].

 56

Park, S. et al. 2000. "Design and Implementation of the Parallel Multimedia File System
Based on Message Distribution" [Online] Published as proceedings of the eighth ACM
international conference on Multimedia, Available from:
http://portal.acm.org/citation.cfm?id=376325 [accessed 21 August 2010].

Sato, T. 2007. "ext4 online defragmentation" [Online] Published as proceedings of the
Linux Symposium 2007, Available from:
http://www.linuxsymposium.org/archives/OLS/Reprints-2007/sato-Reprint.pdf
[accessed 21 August 2010].

Scott, J. R. 2010. "Btrfs by default in Maverick" [Online]
Available from: http://www.netsplit.com/2010/05/14/btrfs-by-default-in-maverick/
[accessed 21 August 2010].

Stephan, J. 2005. "Linux File Systems Comparative Performance" [Online] Available
from:
http://www.unisys.com/products/enterprise__servers/insights/insights__compendium/linux
_file_systems_comparative_performance_white_paper_1-6-06.pdf
[accessed 11 April 2010].

SUN 2004. "File System Performance: The Solaris OS, UFS, Linux ext3, and ReiserFS"
[Online] Available from:
http://www.sun.com/software/whitepapers/solaris10/fs_performance.pdf
[accessed 13 April 2010].

SuSE 2005. "Large File Support in Linux" [Online]
Available: http://www.suse.de/~aj/linux_lfs.html [accessed 22 August 2010].

Sweeney, A. et al. 1996. "Scalability in the XFS File System" [Online] Available from:
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/sweeney.txt
[accessed 22 August 2010].

Tanenbaum, A. 2008. Modern Operating Systems (third edition)
Person, ISBN-10: 0-13-600663-9.

Ven, A. 2010. "Btrfs as default file system" [Online]
Available: http://lists.meego.com/pipermail/meego-dev/2010-May/002133.html
[accessed 17 August 2010].

Wang, Z. & Crowcroft, J. 1996. "Quality of Service Routing for Supporting Multimedia
Applications" [Online] Published on the IEEE journal Selected Areas in Communication
1996 Volume 14, Issue 7, page 1228 - 1234, Available from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=536364
[accessed 21 August 2010].

 57

APPENDICES

Appendix A. RAW DATA OF EXPERIMENTS WITH DEFAULT SETTINGS

The following tables show the raw data results of the experiments. The average time was

used in the diagrams in this document.

Table 8: Free size on the Partition after Formatting

Table 9: Partition Format Time

Table 10: Used Size on Picture Library after Copy Job

 58

Table 11: Used Size on Sound Library after Copy Job

Table 12: Used Size on Video Library after Copy Job

Table 13: Used Size on Video-hd Library after Copy Job

Table 14: Free Size on Picture Library after Copy Job

 59

Table 15: Free Size on Sound Library after Copy Job

Table 16: Free Size on Video Library after Copy Job

Table 17: Free Size on Video-hd Library after Copy Job

Table 18: Copy Time for Picture Library

 60

Table 19: Copy Time for Sound Library

Table 20: Copy Time for Video Library

Table 21: Copy Time for Video-HD Library

Table 22: File System Check Time for Partition with Picture Library

 61

Table 23: File System Check Time for Partition with Sound Library

Table 24: File System Check Time for Partition with Video Library

Table 25: File System Check Time for Partition with Video-HD Library

Table 26: Delete Time for Picture Library Content

 62

Table 27: Delete Time for Sound Library Content

Table 28: Delete Time for Video Library Content

Table 29: Delete Time for Video-HD Library Content

 63

Table 30: Time for Creating File with Specific File Size

Table 31: Time for Filling a Library with Files of a Specific Size

Appendix B. RAW DATA OF EXPERIMENTS WITH TUNED SETTINGS

The following tables show the raw data results of the experiments with tuned settings.

Table 32: ext4 Format Time with Tuned Settings

 64

Table 33: Video-hd Library Tasks on Tuned XFS Partition

Table 34: Picture Library Tasks on Tuned XFS Partition

Table 35: Sound Library Tasks on Tuned JFS Partition

 65

Table 36: Picture Library Tasks on Tuned ext4 Partition

Table 37: Video-hd Library Tasks on Tuned ext4 Partition

Table 38: Sound Library Tasks on Tuned ReiserFS Partition

 66

Appendix C. HARD DISK PERFORMANCE

Figure 22: Hard Disk Performance, Figure Source: Helba (2009)

Figure 23: Relative Performance Improvements, Helba (2009)

 67

Appendix D. MULTIMEDIA STORAGE SPACE REQUIREMENTS

Storage space requirements for uncompressed digital multimedia data.

Figure 24: Data Rate for Uncompressed Multimedia Data, Gemmell et al. (1996)

Impact of scan resolution on the amount of memory needed to save the file.

Figure 25: Scan Resolution, Fulton (2010)

 68

This chart gives an overview of digital camera resolutions

Figure 26: Digital Camera Resolution Chart, B&H (2010)

